This study aims at exploring the potentialities of cold orbital forming in forming complex sheet metal. Aiming at a complex mobile phone shell component of aluminum alloy, two technical schemes for cold orbital forming are first presented. Then, the optimized one, i.e., the more complex inner surface of mobile phone shell is arranged to be formed by the rocking punch with a complex motion, is determined by analyzing the nonuniform plastic deformation laws and punch filling behaviors. On the basis of the optimized technical scheme, the blank geometry in cold orbital forming of mobile phone shell is also optimized based on the forming status of the most difficult forming zone. The consistent finite element (FE) simulated and experimental results indicate that under the optimized technical scheme, not only the bosses in the mobile phone shell are fully formed but also the obtained flow lines are reasonable, which proves that the technical scheme presented in this study is feasible and cold orbital forming exhibits huge potentialities in forming complex sheet metal.

References

1.
Marciniak
,
Z.
,
1970
, “
A Rocking-Die Technique for Cold-Forming Operations
,”
Mach. Prod. Eng.
,
117
, pp.
792
797
.
2.
Han
,
X. H.
,
Zhang
,
X. C.
, and
Hua
,
L.
,
2016
, “
Calculation Method for Rocking Die Motion Track in Cold Orbital Forging
,”
ASME J. Manuf. Sci. Eng.
,
138
(
1
), p.
014501
.
3.
Qu
,
J.
, and
Zhang
,
G. J.
,
2016
, “
Determination of Motion Equation of Rivet Head During Shaft Riveting Assembly Process for Wheel Hub Bearing Units
,”
ASME J. Manuf. Sci. Eng.
,
138
(
4
), p.
041006
.
4.
Oudin
,
J.
,
Ravalard
,
Y.
,
Verwaerde
,
G.
, and
Gelin
,
J. C.
,
1985
, “
Force, Torque and Plastic Flow Analysis in Rotary Upsetting of Ring Shaped Billets
,”
Int. J. Mech. Sci.
,
27
(
11–12
), pp.
761
780
.
5.
Hawkyard
,
J. B.
,
Gurnani
,
C. K. S.
, and
Johnson
,
W.
,
1977
, “
Pressure-Distribution Measurements in Rotary Forging
,”
J. Mech. Eng. Sci.
,
19
(
4
), pp.
135
142
.
6.
Han
,
X. H.
, and
Hua
,
L.
,
2011
, “
Prediction of Contact Pressure, Slip Distance and Wear in Cold Rotary Forging Using Finite Element Methods
,”
Tribol. Int.
,
44
(
12
), pp.
1742
1753
.
7.
Zhou
,
D. C.
,
Yuan
,
S. J.
,
Wang
,
Z. R.
, and
Xiao
,
Z. R.
,
1992
, “
Defects Caused in Forming Process of Rotary Forged Parts and Their Preventive Methods
,”
J. Mater. Process. Technol.
,
32
(
1–2
), pp.
471
479
.
8.
Oh
,
H. K.
, and
Choi
,
S.
,
1997
, “
A Study on Center Thinning in the Rotary Forging of a Circular Plate
,”
J. Mater. Process. Technol.
,
66
(
1–3
), pp.
101
106
.
9.
Yuan
,
S. J.
,
Wang
,
X. H.
,
Liu
,
G.
, and
Zhou
,
D. C.
,
1998
, “
The Precision Forming of Pin Parts by Cold-Drawing and Rotary-Forging
,”
J. Mater. Process. Technol.
,
86
(
1–3
), pp.
252
256
.
10.
Wang
,
G. C.
, and
Zhao
,
G. Q.
,
1999
, “
A Three-Dimensional Rigid-Plastic FEM Analysis of Rotary Forging Deformation of a Ring Workpiece
,”
J. Mater. Process. Technol.
,
95
(
1–3
), pp.
112
115
.
11.
Liu
,
G.
,
Yuan
,
S. J.
,
Wang
,
Z. R.
, and
Zhou
,
D. C.
,
2004
, “
Explanation of the Mushroom Effect in the Rotary Forging of a Cylinder
,”
J. Mater. Process. Technol.
,
151
(
1–3
), pp.
178
182
.
12.
Nowak
,
J.
,
Madej
,
L.
,
Ziolkiewicz
,
S.
,
Plewinski
,
A.
,
Grosman
,
F.
, and
Pietrzyk
,
M.
,
2008
, “
Recent Development in Orbital Forging Technology
,”
Int. J. Mater. Form.
,
1
(
Suppl. 1
), pp.
387
390
.
13.
Hua
,
L.
, and
Han
,
X. H.
,
2009
, “
3D FE Modeling Simulation of Cold Rotary Forging of a Cylinder Workpiece
,”
Mater. Des.
,
30
(
6
), pp.
2133
2142
.
14.
Han
,
X. H.
, and
Hua
,
L.
,
2009
, “
Effect of Size of the Cylindrical Workpiece on the Cold Rotary-Forging Process
,”
Mater. Des.
,
30
(
8
), pp.
2802
2812
.
15.
Loyda
,
A.
,
Hernández-Muñoz
,
G. M.
,
Reyes
,
L. A.
, and
Zambrano-Robledo
,
P.
,
2016
, “
Microstructure Modeling of a Ni-Fe-Based Superalloy During the Rotary Forging Process
,”
J. Mater. Eng. Perform.
,
25
(
6
), pp.
2128
2137
.
16.
Zheng
,
Y.
,
Liu
,
D.
,
Yang
,
Y. H.
,
Ren
,
L. J.
,
Zhang
,
Z.
, and
Gao
,
G. J.
, 2016, “
Investigation on Metal Flow During the Hot Axial Closed Die Rolling Process for Titanium Alloy Discs
,”
Int. J. Adv. Manuf. Technol.
, epub.
17.
Kalinowska-Ozgowicz
,
E.
,
Krukiewicz
,
W.
,
Kowalski
,
L.
,
Kozik
,
R.
,
Rabus
,
J.
, and
Szota
,
J. G.
,
1997
, “
Orbital Forming of an Oxygen Cylinder Web
,”
J. Mater. Process. Technol.
,
64
(
1–3
), pp.
215
222
.
18.
Sheu
,
J. J.
, and
Yu
,
C. H.
,
2008
, “
The Die Failure Prediction and Prevention of the Orbital Forging Process
,”
J. Mater. Process. Technol.
,
201
(
1–3
), pp.
9
13
.
19.
Deng
,
X. B.
,
Hua
,
L.
,
Han
,
X. H.
, and
Song
,
Y. L.
,
2011
, “
Numerical and Experimental Investigation of Cold Rotary Forging of a 20CrMnTi Alloy Spur Bevel Gear
,”
Mater. Des.
,
32
(
3
), pp.
1376
1389
.
20.
Grosman
,
F.
,
Madej
,
Ł.
,
Ziółkiewicz
,
S.
, and
Nowak
,
J.
,
2012
, “
Experimental and Numerical Investigation on Development of New Incremental Forming Process
,”
J. Mater. Process. Technol.
,
212
(
11
), pp.
2200
2209
.
21.
Samołyk
,
G.
,
2013
, “
Investigation of the Cold Orbital Forging Process of an AlMgSi Alloy Bevel Gear
,”
J. Mater. Process. Technol.
,
213
(
10
), pp.
1692
1702
.
22.
Han
,
X. H.
,
Hua
,
L.
,
Zhuang
,
W. H.
, and
Zhang
,
X. C.
,
2014
, “
Process Design and Control in Cold Rotary Forging of Non-Rotary Gear Parts
,”
J. Mater. Process. Technol.
,
214
(
11
), pp.
2402
2416
.
23.
Allwood
,
J. M.
, and
Cullen
,
J. M.
,
2012
,
Sustainable Materials-With Both Eyes Open
,
UIT Cambridge Ltd
, Cambridge, UK.
24.
Merklein
,
M.
,
Tekkaya
,
A. E.
,
Brosius
,
A.
,
Opel
,
S.
, and
Koch
,
J.
,
2011
, “
Overview on Sheet-Bulk Metal Forming Processes
,”
10th International Conference on Technology of Plasticity
, Aachen, Germany, pp.
1109
1114
.
25.
Oyachi
,
Y.
, and
Allwood
,
J. M.
,
2011
, “
Characterizing the Class of Local Metal Sheet Thickening Processes
,”
Steel Research International–Special Edition: 10th International Conference on Technology of Plasticity
, pp.
1036
1041
.
26.
Merklein
,
M.
,
Plettke
,
R.
, and
Opel
,
S.
,
2012
, “
Orbital Forming of Tailored Blanks From Sheet Metal
,”
CIRP Ann. Manuf. Technol.
,
61
(
1
), pp.
263
266
.
27.
Merklein
,
M.
,
Allwood
,
J. M.
,
Behrens
,
B. A.
,
Brosius
,
A.
,
Hagenah
,
H.
,
Kuzman
,
K.
,
Mori
,
K.
,
Tekkaya
,
A. E.
, and
Weckenmann
,
A.
,
2012
, “
Bulk Forming of Sheet Metal
,”
CIRP Ann. Manuf. Technol.
,
61
(
2
), pp.
725
745
.
You do not currently have access to this content.