Multisensor data fusion can enable comprehensive representation of manufacturing processes, thereby contributing to improved part quality control. The effectiveness of data fusion depends on the nature of the input data. This paper investigates orthogonality as a measure for the effectiveness of data fusion, with the goal to maximize data correlation with part quality toward manufacturing process control. By decomposing sensor data into a lifted-dimensional space, contribution from each of the sensors for quantifying part quality is revealed by the corresponding projection vector. Performance evaluation using data measured from polymer injection molding confirmed the effectiveness of the developed technique.

References

1.
Chong
,
C. Y.
,
Mori
,
S.
,
Chang
,
K. C.
, and
Barker
,
W. H.
,
2000
, “
Architecture and Algorithms for Track Association and Fusion
,”
IEEE Aerosp. Electron. Syst.
,
15
(
1
), pp.
5
13
.
2.
Luo
,
R. C.
,
Chang
,
C. C.
, and
Lai
,
C. C.
,
2011
, “
Multisensor Fusion and Integration: Theories, Application, and Its Perspectives
,”
IEEE Sens. J.
,
11
(
12
), pp.
3123
3138
.
3.
Liu
,
K.
, and
Huang
,
S.
,
2016
, “
Integration of Data Fusion Methodology and Degradation Modeling Process to Improve Prognostics
,”
IEEE Trans. Autom. Sci. Eng.
,
13
(
1
), pp.
344
354
.
4.
Esteban
,
J.
,
Starr
,
A.
,
Willetts
,
R.
,
Hannah
,
P.
, and
Bryanston-Cross
,
P.
,
2005
, “
A Review of Data Fusion Models and Architectures: Towards Engineering Guidelines
,”
Neural Comput. Appl.
,
14
(
4
), pp.
273
281
.
5.
Subrahmanya
,
N.
, and
Shin
,
Y. C.
,
2008
, “
Automated Sensor Selection and Fusion for Monitoring and Diagnostics of Plunge Grinding
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031014
.
6.
Gunatilaka
,
A. H.
, and
Baertlein
,
B. A.
,
2001
, “
Feature-Level and Decision-Level Fusion of Noncoincidently Sampled Sensors for Land Mine Detection
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
23
(
6
), pp.
577
589
.
7.
Malhi
,
A.
, and
Gao
,
R.
,
2004
, “
PCA-Based Feature Selection Scheme for Machine Defect Classification
,”
IEEE Trans. Instrum. Meas.
,
53
(
6
), pp.
1517
1525
.
8.
Yu
,
S.
,
Tranchevent
,
L.
,
Liu
,
X.
,
Glanzel
,
W.
,
Suykens
,
J. A.
,
De Moor
,
B.
, and
Moreau
,
Y.
,
2012
, “
Optimized Data Fusion for Kernel K-Means Clustering
,”
IEEE Trans. Pattern Anal. Mach. Intell.
,
34
(
5
), pp.
1031
1039
.
9.
Jin
,
R.
, and
Deng
,
X.
,
2015
, “
Ensemble Modeling for Data Fusion in Manufacturing Process Scale-Up
,”
IIE Trans.
,
47
(3), pp.
203
214
.
10.
Zou
,
J.
,
Arinez
,
J.
,
Chang
,
Q.
, and
Lei
,
Y.
,
2016
, “
Opportunity Window for Energy Saving and Maintenance in Stochastic Production Systems
,”
ASME J. Manuf. Sci. Eng.
,
138
(
12
), p.
121009
.
11.
Braglia
,
M.
, and
Castellano
,
D.
,
2015
, “
Improving Tool-Life Stochastic Control Through a Tool-Life Model Based on Diffusion Theory
,”
ASME J. Manuf. Sci. Eng.
,
137
(
4
), p.
041005
.
12.
Ghosh
,
N.
,
Ravi
,
Y. B.
,
Patra
,
A.
,
Mukhopadhyay
,
S.
,
Paul
,
S.
,
Mohanty
,
A. R.
, and
Chattopadhyay
,
A. B.
,
2007
, “
Estimation of Tool Wear During CNC Milling Using Neural Network Based Sensor Fusion
,”
Mech. Syst. Signal Process.
,
21
(
1
), pp.
466
479
.
13.
Wang
,
J.
,
Qiao
,
F.
,
Zhao
,
F.
, and
Sutherland
,
J. W.
,
2016
, “
A Data-Driven Model for Energy Consumption in the Sintering Process
,”
ASME J. Manuf. Sci. Eng.
,
138
(
10
), p.
101001
.
14.
Weckenmann
,
A.
,
Jiang
,
X.
,
Sommer
,
K. D.
,
Neuschaefer-Rube
,
U.
,
Seewig
,
J.
,
Shaw
,
L.
, and
Estler
,
T.
,
2009
, “
Multisensor Data Fusion in Dimensional Metrology
,”
CIRP Ann.
,
58
(
2
), pp.
701
721
.
15.
Jolliffe
,
I. T.
,
1982
, “
A Note on the Use of Principal Components in Regression
,”
Appl. Stat.
,
31
(
3
), pp.
300
303
.
16.
Zoller
,
P.
, and
Walsh
,
D. J.
,
1995
,
Standard Pressure-Volume-Temperature Data for Polymers
,
CRC Press
,
Boca Raton, FL
.
17.
Kazmer
,
D.
,
2007
,
Injection Mold Design Engineering
,
Carl Hanser Verlag
,
Munich, Germany
.
18.
Wang
,
G.
, and
Ying
,
S.
,
2015
, “
Quality Related Fault Detection Approach Based on Orthogonal Signal Correction and Modified PLS
,”
IEEE Trans. Ind. Inf.
,
11
(
2
), pp.
398
405
.
19.
Gao
,
R. X.
, and
Kazmer
,
D.
,
2012
, “
Multivariate Sensing and Wireless Data Communication for Process Monitoring in RF-Shielded Environment
,”
CIRP Ann.
,
61
(
1
), pp.
523
526
.
20.
Gao
,
R. X.
,
Tang
,
X.
,
Gordon
,
G.
, and
Kazmer
,
D.
,
2014
, “
Online Product Quality Monitoring Through In-Process Measurement
,”
CIRP Ann.
,
63
(
1
), pp.
493
496
.
21.
Kazmer
,
D.
,
Gordon
,
G.
,
Mendible
,
G.
,
Johnston
,
S.
,
Tang
,
X.
,
Fan
,
Z.
, and
Gao
,
R. X.
,
2015
, “
A Multivariate Sensor for Intelligent Polymer Processing
,”
IEEE/ASME Trans. Mechatronics
,
20
(
3
), pp.
1015
1023
.
22.
Kazmer
,
D.
,
Westerdale
,
S.
, and
Hazen
,
D.
,
2008
, “
A Comparison of Staticstical Process Control (SPC) and On-Line Multivariate Analyses (MVA) for Injection Modling
,”
Int. Polym. Process.
,
23
(
5
), pp.
447
458
.
23.
Bushko
,
W. C.
, and
Stokes
,
V. K.
,
1995
, “
Solidification of Thermoviscoelastic Melts—Part I: Formulation of Model Problem
,”
Polym. Eng. Sci.
,
35
(
4
), pp.
351
364
.
24.
Pantani
,
R.
,
Speranza
,
V.
, and
Titomanlio
,
G.
,
2016
, “
Thirty Years of Modeling of Injection Molding: A Brief Review of the Contribution of UNISA Code to the Filed
,”
Int. Polym. Process.
,
31
(
5
), pp.
655
663
.
25.
Young
,
I. T.
,
Walker
,
J. E.
, and
Bowie
,
J. E.
,
1974
, “
An Analysis Technique for Biological Shape
,”
Inf. Control
,
25
(
4
), pp.
357
370
.
26.
Kim
,
H.
, and
Kim
,
J.
,
2000
, “
Region-Based Shape Descriptor Invariantto Rotation, Scale and Translation
,”
Signal Process. Image Commun.
,
16
(
1
), pp.
87
93
.
27.
Zhang
,
D.
, and
Lu
,
G.
,
2004
, “
Review of Shape Representation and Description Techniques
,”
Pattern Recognit.
,
37
(
1
), pp.
1
19
.
You do not currently have access to this content.