This paper presents a micro-electrodischarge machining (EDM) melt-pool model to predict workpiece (anode) material removal from a single discharge micro-EDM process. To model the melt-pool, heat transfer and fluid flow equations are solved in the domain containing dielectric and workpiece material. A level set method is used to identify solid and liquid fractions of the workpiece material when the material is molten by micro-EDM plasma heat flux. The plasma heat flux, plasma pressure and the radius of the plasma bubble have been estimated by a micro-EDM plasma model and serve as inputs to the melt-pool model to predict the volume of material removed from the surface of the workpiece. Experiments are carried out to study the effect of interelectrode voltage and gap distance on the crater size. For interelectrode voltage in the range of 200–300 V and gap distance of 1,2 μm, the model predicts crater diameter in the range of 78–96 μm and maximum crater depth of 8–9 μm for discharge duration of 2 μs. The crater diameter values for most of experimental craters show good agreement with the simulated crater shapes. However, the model over-predicts the crater depths compared to the experiments.

References

1.
Heinz
,
K.
,
2010
, “
Fundamental Study of Magnetic Field-Assisted Micro-EDM for Non-Magnetic Materials
,” M.S. thesis, University of Illinois at Urbana-Champaign, Champaign, IL.
2.
Yeo
,
S.
,
Kurnia
,
W.
, and
Tan
,
P.
,
2008
, “
Critical Assessment and Numerical Comparison of Electro-Thermal Models in EDM
,”
J. Mater. Process. Technol.
,
203
(
1–3
), pp.
241
251
.10.1016/j.jmatprotec.2007.10.026
3.
Boothroyd
,
C.
,
2006
,
Fundamentals of Machining and Machine Tools
,
CRC/Taylor & Francis
, Boca Raton, FL.
4.
Snoeys
,
R.
, and
Dijck
,
F. S. V.
,
1972
, “
Plasma Channel Diameter Growth Affects Stock Removal in EDM
,”
CIRP Ann.
,
21
(
1
), pp.
39
40
.
5.
Patel
,
M.
,
Barrufet
,
M.
,
Eubank
,
P.
, and
Dibitonto
,
D.
,
1989
, “
Theoretical Models of the Electrical Discharge Machining Process II. The Anode Erosion Model
,”
J. Appl. Phys.
,
66
(
9
), pp.
4104
4111
.10.1063/1.343995
6.
Singh
,
A.
, and
Ghosh
,
A.
,
1999
, “
Thermo-Electric Model of Material Removal During Electric Discharge Machining
,”
Int. J. Mach. Tools Manuf.
,
39
(
4
), pp.
669
682
.10.1016/S0890-6955(98)00047-9
7.
Joshi
,
S.
, and
Pande
,
S.
,
2010
, “
Thermo-Physical Modeling of Die-Sinking EDM Process
,”
J. Manuf. Processes
,
12
(
1
), pp.
45
56
.10.1016/j.jmapro.2010.02.001
8.
Tao
,
J.
,
Ni
,
J.
, and
Shih
,
A.
,
2012
, “
Modeling of the Anode Crater Formation in Electrical Discharge Machining
,”
ASME J. Manuf. Sci. Eng.
,
134
(
1
), p.
011002
.10.1115/1.4005303
9.
Mujumdar
,
S. S.
,
Curreli
,
D.
,
Kapoor
,
S. G.
, and
Ruzic
,
D.
,
2014
, “
A Model of Micro Electro-Discharge Machining Plasma Discharge in Deionized Water
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031011
.10.1115/1.4026298
10.
Ikai
,
T.
, and
Hashigushi
,
K.
,
1995
, “
Heat Input for Crater Formation in EDM
,”
Proceedings of the International Symposium for Electro-Machining-ISEM XI
,
EPFL
, pp.
163
170
.
11.
Hu
,
J.
,
Guo
,
H.
, and
Tsai
,
H. L.
,
2008
, “
Weld Pool Dynamics and the Formation of Ripples in 3D Gas Metal Arc Welding
,”
Int. J. Heat Mass Transfer
,
51
(
9
), pp.
2537
2552
.10.1016/j.ijheatmasstransfer.2007.07.042
12.
Xu
,
G.
,
Hu
,
J.
, and
Tsai
,
H. L.
,
2012
, “
Modeling Three-Dimensional Plasma Arc in Gas Tungsten Arc Welding
,”
ASME J. Manuf. Sci. Eng.
,
134
(
3
), p.
031001
.10.1115/1.4006091
13.
Lieberman
,
M.
, and
Lichtenberg
,
A. J.
,
2005
,
Principles of Plasma Discharges and Material Processing
,
Wiley
,
New York
.10.1002/0471724254
14.
Meyyappan
,
R.
, and
Govindan
,
T.
,
1995
, “
Modeling of Electron Cyclotron Resonance Discharges
,”
IEEE Trans. Plasma Sci.
,
23
(
4
), pp.
623
627
.10.1109/27.467983
15.
Hoche
,
D.
,
Muller
,
S.
,
Rapin
,
G.
,
Shinn
,
M.
,
Remdt
,
E.
,
Gubisch
,
M.
, and
Schaaf
,
P.
,
2009
, “
Marangoni Convection During Free Electron Laser Nitriding of Titanium
,”
Metall. Mater. Trans. B
,
40
(
4
), pp.
497
507
.10.1007/s11663-009-9243-1
16.
Heinz
,
K.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Surla
,
V.
,
2011
, “
An Investigation of Magnetic-Field-Assisted Material Removal in Micro-EDM for Nonmagnetic Materials
,”
ASME J. Manuf. Sci. Eng.
,
133
(
2
), p.
021002
.10.1115/1.4003488
17.
Rai
,
R.
,
Elmer
,
J.
,
Palmer
,
T.
, and
DebRoy
,
T.
,
2007
, “
Heat Transfer and Fluid Flow During Keyhole Mode Laser Welding of Tantalum, Ti–6Al–4V, 304l Stainless Steel and Vanadium
,”
J. Phys. D.: Appl. Phys.
,
40
(
18
), pp.
5753
5766
.10.1088/0022-3727/40/18/037
18.
Kunieda
,
M.
,
Lauwers
,
B.
,
Rajurkar
,
K.
, and
Schumacher
,
B.
,
2005
, “
Advancing EDM Through Fundamental Insight Into the Process
,”
CIRP Ann.
,
54
(
2
), pp.
67
87
.10.1916/S9997-8506(7)60020-1
You do not currently have access to this content.