We have demonstrated the ability to perform a ductile material removal operation, via single-point diamond turning, on single-crystal silicon carbide (6H). To our knowledge, this is the first reported work on the ductile machining of single-crystal silicon carbide (SiC). SiC experiences a ductile-to-brittle transition similar to other nominally brittle materials such as silicon, germanium, and silicon nitride. It is believed that the ductility of SiC during machining is due to the formation of a high-pressure phase at the cutting edge, which encompasses the chip formation zone and its associated material volume. This high-pressure phase transformation mechanism is similar to that found with other semiconductors and ceramics, leading to a plastic response rather than brittle fracture at small size scales.

1.
Morris
,
J. C.
,
Callahan
,
D. L.
,
Kulik
,
J.
,
Patten
,
J. A.
, and
Scattergood
,
R. O.
, 1995, “
Origins of the Ductile Regime in Single-Point Diamond Turning of Semiconductor
,”
J. Am. Chem. Soc.
0002-7863,
78
(
8
), pp.
2015
20
.
2.
Gogotsi
,
Y. G.
,
Kailer
,
A.
, and
Nickel
,
K. G.
, 1997, “
Phase Transformations in Materials Studied by Micro-Raman Spectroscopy of Indentations
,”
Mater. Res. Innovations
1432-8917,
1
, pp.
3
9
.
3.
Gilman
,
J. J.
, 1993, “
Shear Induced Metallization
,”
Philos. Mag. B
1364-2812,
67
, pp.
207
214
.
4.
VanVetchen
,
A.
, 1973, “
Quantum Dielectric Theory of Electronegativity in Covalent Systems—Part III: Pressure—Temperature Phase Diagrams, Heats of Mixing, and Distribution Coefficients
,”
Phys. Rev. B
0556-2805,
7
, pp.
1479
1507
.
5.
Milman
,
Y. V.
,
Chugunova
,
S. I.
, and
Timofeeva
,
I. I.
, 2001, “
The Resistance of Silicon Carbide to Static and Impact Local Loading
,”
Int. J. Impact Eng.
0734-743X,
26
, pp.
533
542
.
6.
Yoshida
,
M.
, and
Onodera
,
A.
, 1993, “
Pressure Induced Phase Transitions in SiC
,”
Phys. Rev. B
0163-1829,
48
, pp.
10587
10590
.
7.
Liu
,
J.
, and
Vohra
,
Y. K.
, 1994, “
Raman Modes of 6H Polytype of Silicon Carbide to Ultrahigh Pressures: A Comparison With Silicon and Diamond
,”
Phys. Rev. Lett.
0031-9007,
72
,
4105
4108
.
8.
Kailer
,
A.
,
Nickel
,
K. G.
, and
Gogotsi
,
Y. G.
, 1999, “
Raman Microspectroscopy of Nanocrystalline and Amorphous Phases in Hardness Indentations
,”
J. Raman Spectrosc.
0377-0486,
30
, pp.
939
946
.
9.
Sekine
,
T.
, and
Kobayashi
,
T.
, 1997, “
Shock Compression of 6H Polytype SiC to 160GPa
,”
Phys. Rev. B
0163-1829,
55
, p.
8034
.
10.
Mujica
,
A.
, 2003, “
High Pressure Phases of Group-IV, III-V, and II-VI Compounds
,”
Rev. Mod. Phys.
0034-6861,
75
, pp.
863
912
.
11.
Pirouz
,
P.
, 1998, “
On Micropipes and Nanopipes in SiC and GaN
,”
Philos. Mag. A
0141-8610,
78
, pp.
727
736
.
12.
Axen
,
N.
,
Kahlman
,
L.
, and
Hutchings
,
I. M.
, 1997, “
Correlations Between Tangential Force and Damage Mechanism in the Scratch Testing of Ceramics
,”
Tribol. Int.
0301-679X,
30
(
7
), pp.
467
474
.
13.
Pharr
,
G.
, 2003, Workshop on High Pressure Phase Transformations of Semiconductors and Ceramics, UNC Charlotte, Aug. 20–22.
14.
Patten
,
J.
, 1996, “
High Pressure Phase Transformation Analysis and Molecular Dynamics Simulations of Single Point Diamond Turning of Germanium
,” Ph.D. dissertation, NCSU, Raleigh, NC.
15.
Abdel-Aal
,
H. A.
,
Smith
,
S. T.
, and
Patten
,
J. A.
, 1997, “
On the Development of Surface Temperatures in Precision Single-Point Diamond Abrasion of Semi-Conductors
,”
Int. Commun. Heat Mass Transfer
0735-1933,
24
(
8
), pp.
1131
1140
.
16.
Shin
,
Y.
,
Lei
,
S.
,
Pfefferkorn
,
F. E.
,
Rebro
,
P.
, and
Rozzi
,
J. C.
, 2000, “
Laser Assisted Machining: Its Potential and Future
,”
Mach. Technol.
1544-9467,
11
, pp.
1
6
.
17.
Patten
,
J.
et al.
, 2003, “
Ductile Machining Phenomena of Nominally Brittle Materials at the Nanoscale
,”
4th Int. Conf. on Intelligent Processing and Manufacturing of Materials
, IPMM-2003, May 18–23, Center for Computational Materials Science, Institute for Materials Research, Tohoku University, Sendai, Japan.
18.
Gao
,
W.
,
Kudo
,
Y.
,
Kiyono
,
S.
, and
Patten
,
J.
, 2004, “
Evaluation of an Instrument for Nanomachining and Nanometrology
,”
Int. Symp. On Precision Measurements (ISPMM’2004)
, Aug. 24–28, Beijing, China.
19.
Yan
,
J.
,
Syoji
,
K.
, and
Kuriyagawa
,
T.
, 2002,
Int. J. Jpn. Soc. Precis. Eng.
0916-782X,
68
, pp.
561
565
.
20.
Patten
,
J. A.
, and
Gao
,
W.
, 2001, “
Extreme Negative Rake Angle Technique for Single Point Diamond Nano-Cutting of Silicon
,”
Precis. Eng.
0141-6359,
25
, pp.
165
167
.
21.
Kumbera
,
T.
,
Patten
,
J. A.
,
Cherukuri
,
H.
,
Brand
,
C. J.
, and
Marusich
,
T. D.
, 2001, “
Machining Force Analysis for Ductile Machining of Silicon Nitride
,”
J. Manuf. Sci. Technol.
,
5
(
3
), pp.
341
352
.
22.
Patten
,
J.
, et al.
, 2003, “
High Pressure Phase Transformations of Silicon Nitride
,”
Appl. Phys. Lett.
0003-6951,
83
, pp.
4740
4742
.
23.
Blake
,
P. N.
, and
Scattergood
,
R. O.
, 1990, “
Ductile-Regime Machining of Germanium and Silicon
,”
J. Am. Chem. Soc.
0002-7863,
73
, pp.
949
958
.
24.
Blackley
,
W. S.
, and
Scattergood
,
R. O.
, 1991, “
Ductile-Regime Machining Model for Diamond Turning of Brittle Materials
,”
Precis. Eng.
0141-6359,
13
, pp.
95
103
.
25.
Wang
,
J. C.
, and
Hsu
,
S. M.
, 1994, “
Chemically Assisted Machining of Ceramics
,”
ASME J. Tribol.
0742-4787,
116
, pp.
423
429
.
26.
Patten
,
J.
, 1998,
Proc. ASPE Spring Topical Meeting on Silicon Machining
, Vol.
17
, pp.
88
91
.
27.
Patten
,
J. A.
, and
Mumford
,
S. V.
, 2000,
Proc. ASPE 2000 Annual Meeting
, Vol.
22
, pp.
604
607
.
28.
Chargin
,
D.
, 1998,
Proc. ASPE Spring Topical Meeting on Silicon Machining
, Vol.
17
, pp.
59
62
.
29.
High Pressure Phase Transformations of Semiconductors and Ceramics, http:∕∕www.micro.physics.ncsu.eduhttp:∕∕www.micro.physics.ncsu.edu.
You do not currently have access to this content.