Abstract

This letter presents approaches that reduce the computational demand of including second-order dynamics sensitivity information into optimization algorithms for robots in contact with the environment. A full second-order differential dynamic programming (DDP) algorithm is presented where all the necessary dynamics partial derivatives are computed with the same complexity as DDP’s first-order counterpart, the iterative linear quadratic regulator (iLQR). Compared to linearized models used in iLQR, DDP more accurately represents the dynamics locally, but it is not often used since the second-order partials of the dynamics are tensorial and expensive to compute. This work illustrates how to avoid the need for computing the derivative tensor by instead leveraging reverse-mode accumulation of derivatives, extending previous work for unconstrained systems. We exploit the structure of the contact-constrained dynamics in this process. The performance of the proposed approaches is benchmarked with a simulated model of the MIT Mini Cheetah executing a bounding gait.

References

1.
Apgar
,
T.
,
Clary
,
P.
,
Green
,
K.
,
Fern
,
A.
, and
Hurst
,
J. W.
,
2018
, “
Fast Online Trajectory Optimization for the Bipedal Robot Cassie
,”
Robotics: Science and Systems
,
Vol. 101
, pp.
14
.
2.
Wensing
,
P. M.
, and
Orin
,
D. E.
,
2013
, “
High-Speed Humanoid Running Through Control With a 3D-SLIP Model
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Tokyo, Japan
,
Nov. 3–7
, pp.
5134
5140
.
3.
Koditschek
,
D. E.
, and
Full
,
R. J.
,
1999
, “
Templates and Anchors: Neuromechanical Hypotheses of Legged Locomotion on Land
,”
J. Exp. Biol.
,
202
(
23
), pp.
3325
3332
.
4.
Hutter
,
M.
,
Remy
,
C. D.
,
Höpflinger
,
M. A.
, and
Siegwart
,
R.
,
2010
, “
SLIP Running With an Articulated Robotic Leg
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22
, pp.
4934
4939
.
5.
Dai
,
H.
,
Valenzuela
,
A.
, and
Tedrake
,
R.
,
2014
, “
Whole-Body Motion Planning With Centroidal Dynamics and Full Kinematics
,”
IEEE-RAS International Conference on Humanoid Robots
,
Madrid, Spain
,
Nov. 18–20
, pp.
295
302
.
6.
Bledt
,
G.
,
Powell
,
M. J.
,
Katz
,
B.
,
Di Carlo
,
J.
,
Wensing
,
P. M.
, and
Kim
,
S.
,
2018
, “
MIT Cheetah 3: Design and Control of a Robust, Dynamic Quadruped Robot
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Madrid, Spain
,
Oct. 1–5
, pp.
2245
2252
.
7.
Bellicoso
,
C. D.
,
Jenelten
,
F.
,
Gehring
,
C.
, and
Hutter
,
M.
,
2018
, “
Dynamic Locomotion Through Online Nonlinear Motion Optimization for Quadrupedal Robots
,”
IEEE Robot. Autom. Lett.
,
3
(
3
), pp.
2261
2268
.
8.
Tassa
,
Y.
,
Erez
,
T.
, and
Todorov
,
E.
,
2012
, “
Synthesis and Stabilization of Complex Behaviors Through Online Trajectory Optimization
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura-Algarve, Portugal
,
Oct. 7–12
, pp.
4906
4913
.
9.
Grandia
,
R.
,
Farshidian
,
F.
,
Ranftl
,
R.
, and
Hutter
,
M.
,
2019
, “
Feedback MPC for Torque-Controlled Legged Robots
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Macau, China
,
Nov. 3–8
, pp.
4730
4737
.
10.
Mayne
,
D.
,
1966
, “
A Second-Order Gradient Method for Determining Optimal Trajectories of Non-Linear Discrete-Time Systems
,”
Int. J. Control.
,
3
(
1
), pp.
85
95
.
11.
Tassa
,
Y.
,
Mansard
,
N.
, and
Todorov
,
E.
,
2014
, “
Control-Limited Differential Dynamic Programming
,”
IEEE International Conference on Robotics and Automation
,
Hong Kong, China
,
May 31–June 7
, pp.
1168
1175
.
12.
Lantoine
,
G.
, and
Russell
,
R. P.
,
2012
, “
A Hybrid Differential Dynamic Programming Algorithm for Constrained Optimal Control Problems. Part 1: Theory
,”
J. Optim. Theory Appl.
,
154
(
2
), pp.
382
417
.
13.
Howell
,
T.
,
Jackson
,
B.
, and
Manchester
,
Z.
,
2019
, “
Altro: A Fast Solver for Constrained Trajectory Optimization
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Macau, China
,
Nov. 3–8
, pp.
7674
7679
.
14.
Li
,
H.
, and
Wensing
,
P. M.
,
2020
, “
Hybrid Systems Differential Dynamic Programming for Whole-Body Motion Planning of Legged Robots
,”
IEEE Robot. Autom. Lett.
,
5
(
4
), pp.
5448
5455
.
15.
Kong
,
N. J.
,
Council
,
G.
, and
Johnson
,
A. M.
,
2021
, “
iLQR for Piecewise-Smooth Hybrid Dynamical Systems
,”
IEEE Conference on Decision and Control
,
Austin, TX
,
Dec. 14–17
, pp.
5374
5381
.
16.
Tang
,
Y.
,
Chu
,
X.
, and
Au
,
K.
,
2021
, “
HM-DDP: A Hybrid Multiple-Shooting Differential Dynamic Programming Method for Constrained Trajectory Optimization
,”
arXiv preprint
. https://arxiv.org/abs/2109.07131
17.
Li
,
H.
,
Frei
,
R. J.
, and
Wensing
,
P. M.
,
2021
, “
Model Hierarchy Predictive Control of Robotic Systems
,”
IEEE Robot. Autom. Lett.
,
6
(
2
), pp.
3373
3380
.
18.
Li
,
W.
, and
Todorov
,
E.
,
2004
, “
Iterative Linear Quadratic Regulator Design for Nonlinear Biological Movement Systems
,”
ICINCO
(
1
), pp.
222
229
.
19.
Nganga
,
J.
, and
Wensing
,
P. M.
,
2021
, “
Accelerating Second-Order Differential Dynamic Programming for Rigid-Body Systems
,”
IEEE Robot. Autom. Lett.
,
6
(
4
), pp.
7659
7666
.
20.
Orin
,
D. E.
,
McGhee
,
R.
,
Vukobratović
,
M.
, and
Hartoch
,
G.
,
1979
, “
Kinematic and Kinetic Analysis of Open-Chain Linkages Utilizing Newton-Euler Methods
,”
Math Biosci.
,
43
(
1–2
), pp.
107
130
.
21.
Featherstone
,
R.
,
2014
,
Rigid Body Dynamics Algorithms
,
Springer
,
New York
.
22.
Budhiraja
,
R.
,
2019
, “
Multi-Body Locomotion: Problem Structure and Efficient Resolution
,” Ph.D. thesis,
Institut national des sciences appliquées de Toulouse
,
Toulouse, France
.
23.
Denardo
,
E. V.
,
2012
,
Dynamic Programming: Models and Applications
,
Courier Corporation
,
Englewood Cliffs, NJ
, pp.
1
227
.
24.
Budhiraja
,
R.
,
Carpentier
,
J.
,
Mastalli
,
C.
, and
Mansard
,
N.
,
2018
, “
Differential Dynamic Programming for Multi-Phase Rigid Contact Dynamics
,”
IEEE-RAS International Conference on Humanoid Robots
,
Beijing, China
,
Nov. 6–9
, pp.
1
9
.
25.
Farshidian
,
F.
,
Neunert
,
M.
,
Winkler
,
A. W.
,
Rey
,
G.
, and
Buchli
,
J.
,
2017
, “
An Efficient Optimal Planning and Control Framework for Quadrupedal Locomotion
,”
IEEE International Conference on Robotics and Automation
,
Singapore
,
May 29–June 3
, pp.
93
100
.
26.
Hauser
,
J.
, and
Saccon
,
A.
,
2006
, “
A Barrier Function Method for the Optimization of Trajectory Functionals With Constraints
,”
IEEE Conference on Decision and Control
,
San Diego, CA
,
Dec. 13–15
, pp.
864
869
.
27.
Andersson
,
J. A.
,
Gillis
,
J.
,
Horn
,
G.
,
Rawlings
,
J. B.
, and
Diehl
,
M.
,
2019
, “
CasADi: A Software Framework for Nonlinear Optimization and Optimal Control
,”
Math. Program. Comput.
,
11
(
1
), pp.
1
36
.
28.
Grievank
,
A.
,
2000
,
Principles and Techniques of Algorithmic Differentiation: Evaluating Derivatives
,
SIAM
,
Philadelphia
.
29.
Katz
,
B.
,
Di Carlo
,
J.
, and
Kim
,
S.
,
2018
, “
Mini Cheetah: A Platform for Pushing the Limits of Dynamic Quadruped Control
,”
IEEE International Conference on Robotics and Automation
,
Madrid, Spain
,
Oct. 1–5
, pp.
6295
6301
.
30.
Chatzinikolaidis
,
I.
, and
Li
,
Z.
,
2021
, “
Trajectory Optimization of Contact-Rich Motions Using Implicit Differential Dynamic Programming
,”
IEEE Robot. Autom. Lett.
,
6
(
2
), pp.
2626
2633
.
31.
Jallet
,
W.
,
Mansard
,
N.
, and
Carpentier
,
J.
,
2022
, “
Implicit Differential Dynamic Programming
,”
International Conference on Robotics and Automation
,
Philadelphia, PA
,
May 23–27
, pp.
1455
1461
.
32.
Pellegrini
,
E.
, and
Russell
,
R. P.
,
2017
, “
Applications of the Multiple-Shooting Differential Dynamic Programming Algorithm With Path and Terminal Constraints
,”
AAS/AIAA Astrodynamics Specialist Conference
,
Stevenson, WA
,
Aug. 20–27
.
33.
Liao
,
L. Z.
, and
Shoemaker
,
C. A.
,
1991
, “
Convergence in Unconstrained Discrete-Time Differential Dynamic Programming
,”
IEEE. Trans. Autom. Contr.
,
36
(
6
), pp.
692
706
.
You do not currently have access to this content.