Abstract

This paper presents a novel technique for control of systems with bounded nonlinearity, convex state constraints, and control constraints. The technique is particularly useful for problems whose control constraints may be written as convex sets or the union of convex sets. The problem is reduced to finding bounding solutions associated with linear systems, and it is shown that this can be done with efficient second-order cone program (SOCP) solvers. The nonlinear control may then be interpolated from the bounding solutions. Three engineering problems are solved. These are the Van der Pol oscillator with bounded control and with quantized control, a pendulum driven by a DC motor with bounded voltage control, and a lane change maneuver with bounded rotational control acceleration. For each problem, the resulting second-order cone program solves in approximately 0.1 s or less. It is concluded that the technique provides an efficient means of solving certain control problems with control constraints.

References

1.
Khalil
,
H. K.
,
2001
,
Nonlinear Systems
,
Pearson
,
Upper Saddle River, NJ
, pp.
5
23
.
2.
Rugh
,
W. J.
,
1981
,
Nonlinear System Theory
,
The Johns Hopkins University Press
,
Baltimore, MD
, pp.
1
3
.
3.
Pylorof
,
D.
, and
Bakolas
,
E.
,
2015
, “
Nonlinear Control Under Polytopic Input Constraints With Application to the Attitude Control Problem
,”
In 2015 American Control Conference (ACC)
,
Chicago, IL
,
July 1–2
, pp.
4555
4560
.
4.
Boyd
,
S.
, and
Vandenberghe
,
L.
,
2004
,
Convex Optimization
,
Cambridge University Press
,
Cambridge, NY
, pp.
9
11
.
5.
Peng
,
J.
,
Roos
,
C.
, and
Terlaky
,
T.
,
2001
,
Self-Regularity: A New Paradigm for Primal-Dual Interior-Point Algorithms
, Princeton Series in Applied Mathematics,
Princeton University Press
,
Princeton, NJ
, pp.
125
158
.
6.
Nesterov
,
Y.
, and
Nemirovsky
,
A.
,
1994
,
Interior-Point Polynomial Methods in Convex Programming
,
SIAM
,
Philadelphia, PA
, pp.
217
248
.
7.
Löfberg
,
J.
,
2004
, “
Yalmip: A Toolbox for Modeling and Optimization in Matlab
,” In
Proceedings of the CACSD Conference
,
Taipei, Taiwan
,
Sept. 2–4
, pp.
284
289
.
8.
Gurobi Optimization, LLC
,
2019
.
Gurobi Optimizer Reference Manual
.
9.
Korda
,
M.
, and
Mezic
,
I.
,
2018
, “
Linear Redictors for Nonlinear Dynamical Systems: Koopman Operator Meets Model Predictive Control
,”
Automatica
,
93
, pp.
149
160
.
10.
Brunton
,
S. L.
,
Brunton
,
B. W.
,
Proctor
,
J. L.
, and
Kutz
,
J. N.
,
2016
, “
Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control
,”
PLoS One
,
11
(
2
), p.
e0150171
.
11.
Pontryagin
,
L. S.
,
Boltyanskii
,
V. G.
,
Gamkrelidze
,
R. V.
, and
Mischenko
,
E. F.
,
1986
,
The Mathematical Theory of Optimal Processes
,
Gordon and Breach Science Publishers
,
New York
, pp.
19
22
.
12.
Liberzon
,
D.
,
2012
,
Calculus of Variations and Optimal Control Theory
,
Princeton University Press
,
Princeton, NJ
, pp.
102
105
.
13.
Hull
,
D. G.
,
1997
, “
Conversion of Optimal Control Problems Into Parameter Optimization Problems
,”
J. Guidance Control Dyn.
,
20
, pp.
57
60
.
14.
Reynolds
,
T. P.
, and
Mesbahi
,
M.
,
2020
, “
The Crawling Phenomenon in Sequential Convex Programming
,”
In 2020 American Control Conference (ACC)
,
Online
,
July 1–3
, pp.
3613
3618
.
15.
Rawlings
,
J. B.
,
Mayne
,
D. Q.
, and
Diehl
,
M. M.
,
2019
,
Model Predictive Control: Theory, Computation, and Design
,
Nob Hill Publishing
,
Santa Barbara, CA
, pp.
1
26
.
16.
Açimeşe
,
B.
, and
Blackmore
,
L.
,
2011
, “
Lossless Convexification for a Class of Optimal Control Problems With Nonconvex Control Constraints
,”
Automatica
,
47
, pp.
341
347
.
17.
Harris
,
M. W.
, and
Açıkmeşe
,
B.
,
2013
, “
Maximum Divert for Planetary Landing Using Convex Optimization
,”
J. Optim. Theory Appl.
,
162
, pp.
975
995
.
18.
Harris
,
M. W.
, and
Açıkmeşe
,
B.
,
2014
, “
Lossless Convexification of Non-Convex Optimal Control Problems for State Constrained Linear Systems
,”
Automatica
,
50
(
9
), pp.
2304
2311
.
19.
Kunhippurayil
,
S.
,
Harris
,
M. W.
, and
Jansson
,
O.
,
2021
, “
Lossless Convexification of Optimal Control Problems With Annular Control Constraints
,”
Automatica
,
133
, p.
109848
.
20.
Harris
,
M. W.
,
2021
, “
Optimal Control on Disconnected Sets Using Extreme Point Relaxations and Normality Approximations
,”
IEEE. Trans. Automat. Contr.
,
66
(
12
), pp.
6063
6070
.
21.
Woodford
,
N. T.
, and
Harris
,
M. W.
,
2022
, “
Geometric Properties of Time Optimal Controls With State Constraints Using Strong Observability
,”
IEEE. Trans. Automat. Contr.
,
67
(
12
), pp.
6881
6887
.
22.
Rugh
,
W. J.
,
1993
,
Linear System Theory
,
Prentice Hall
,
Upper Saddle River, NJ
, pp.
142
148
.
23.
Trentelman
,
H. L.
,
Stoorvogel
,
A. A.
, and
Hautus
,
M.
,
2001
,
Control Theory for Linear Systems
,
Springer
,
London, UK
, pp.
153
166
.
24.
Berkovitz
,
L. D.
,
1975
,
Optimal Control Theory
,
Springer-Verlag
,
New York
, pp.
213
222
.
25.
Bullo
,
F.
, and
Lewis
,
A. D.
,
2005
, “
Low-Order Controllability and Kinematic Reductions for Affine Connection Control Systems
,”
SIAM J. Control Optim.
,
44
(
3
), pp.
885
908
.
26.
Malisoff
,
M.
, and
Sontag
,
E. D.
,
2000
, “
Universal Formulas for Feedback Stabilization With Respect to Minkowski Balls
,”
Syst. Control Lett.
,
40
(
4
), pp.
247
260
.
27.
Ahmed
,
H.
,
Rios
,
H.
,
Ayalew
,
B.
, and
Wang
,
Y.
,
2018
, “
Robust Output Tracking Control for Van Der Pol Oscillator: A Sliding-Mode Differentiator Approach
,”
In 2018 American Control Conference (ACC)
,
Milwaukee, WI
,
July 27–29
, pp.
5350
5355
.
28.
Jin
,
L.
,
Mei
,
J.
, and
Li
,
L.
,
2014
, “
Chaos Control of Parametric Driven Duffing Oscillators
,”
Appl. Phys. Lett.
,
104
(
13
), p.
134101
.
29.
Lowe
,
G.
, and
Zohdy
,
M.
,
2010
, “
Modeling Nonlinear Systems Using Multiple Piecewise Linear Equations
,”
Nonlinear Anal.: Modell. Control
,
15
(
4
), pp.
451
458
.
30.
Lowe
,
G.
, and
Zohdy
,
M. A.
,
2009
, “
A Technique for Using H2 and H-Infinity Robust State Estimation on Nonlinear Systems
,”
In 2009 IEEE International Conference on Electro/Information Technology
,
Windsor, ON, Canada
,
June 7–9
,
IEEE
, pp.
109
115
.
31.
LaValle
,
S. M.
,
2006
,
Planning Algorithms
,
Cambridge University Press
,
Cambridge, NY
, p.
744
.
You do not currently have access to this content.