Abstract

Vibration testing of complex aerospace structures requires substantial pretest planning. Ground and flight testing of structures can be costly to execute in terms of time and money, so it is pertinent that tests are properly set up to capture mode shapes or dynamics of interest. One of the most important planning tasks is the placement of sensors to acquire measurements for control and characterization of the results. In this paper, we will examine two techniques that can leverage available output from finite element modeling to intelligently place accelerometers for a vibration test to capture the structural dynamics throughout a specified frequency range with a data acquisition channel budget. These two techniques are effective independence (EI) and optimal experimental design (OED). Both methods will be applied to an aerospace structure. Effects of the chosen sets on system equivalent reduction and expansion process (SEREP) are detailed alongside simpler comparison metrics, like the auto-modal assurance criterion (auto-MAC). In addition to comparing the resulting instrumentation sets, the application of the two approaches will be compared in terms of the inputs required, the information obtained from their application, and the computation time requirements. Both OED and EI offer an effective method for selecting an instrumentation set for a given vibration test. EI is a straightforward, computationally inexpensive approach that provides effective instrumentation sets. OED provides an effective alternative that is less sensitive to the impact of local modes and leads to a natural ranking of importance for each chosen degree-of-freedom (DOF).

References

1.
Kammer
,
D. C.
,
1991
, “
Sensor Placement for On-Orbit Modal Identification and Correlation of Large Space Structures
,”
J. Guid. Control Dyn.
,
14
(
2
), pp.
251
259
.
2.
Meo
,
M.
, and
Zumpano
,
G.
,
2005
, “
On the Optimal Sensor Placement Techniques for a Bridge Structure
,”
Eng. Struct.
,
27
(
10
), pp.
1488
1497
.
3.
Papadopoulos
,
M.
, and
Garcia
,
E.
,
1998
, “
Sensor Placement Methodologies for Dynamic Testing
,”
AIAA J.
,
36
(
2
), pp.
256
263
.
4.
Penny
,
J. E. T.
,
Friswell
,
M. I.
, and
Garvey
,
S. D.
,
1994
, “
Automatic Choice of Measurement Locations for Dynamic Testing
,”
AIAA J.
,
32
(
2
), pp.
407
414
.
5.
Friswell
,
M. I.
, and
Castro-Triguero
,
R.
,
2015
, “
Clustering of Sensor Locations Using the Effective Independence Method
,”
AIAA J.
,
53
(
5
), pp.
1388
1391
.
6.
Castro-Triguero
,
R.
,
Murugan
,
S.
,
Gallego
,
R.
, and
Friswell
,
M. I.
,
2013
, “
Robustness of Optimal Sensor Placement Under Parameter Uncertainty
,”
Mech. Syst. Signal Process.
,
41
(
1–2
), pp.
268
287
.
7.
Kim
,
T.
,
Youn
,
B. D.
, and
Oh
,
H.
,
2018
, “
Development of a Stochastic Effective Independence (SEFI) Method for Optimal Sensor Placement Under Uncertainty
,”
Mech. Syst. Signal Process.
,
111
, pp.
615
627
.
8.
Suryanarayana
,
G.
,
Arroyo
,
J.
,
Helsen
,
L.
, and
Lago
,
J.
,
2021
, “
A Data Driven Method for Optimal Sensor Placement in Multi-Zone Buildings
,”
Energy Build.
,
243
, p.
110956
.
9.
Clark
,
E.
,
Askham
,
T.
,
Brunton
,
S. L.
, and
Kutz
,
J. N.
,
2018
, “
Greedy Sensor Placement With Cost Constraints
,”
IEEE Sens. J.
,
19
(
7
), pp.
2642
2656
.
10.
Beale
,
C.
,
Schultz
,
R.
,
Smith
,
C.
, and
Walsh
,
T.
,
2022
, “
Degree of Freedom Selection Approaches for MIMO Vibration Test Design
,”
Proceedings of IMAC XL
,
Orlando, FL
,
Feb. 15
, pp.
81
90
.
11.
Kouri
,
D. P.
,
Jakeman
,
J. D.
,
Huerta
,
J. G.
,
Smith
,
C. B.
,
Walsh
,
T. F.
,
Udell
,
M.
, and
Uryasev
,
S.
,
2021
, “
Risk-Adapted Experimental Design for High Consequence Systems: LDRD Final Report
,”
Sandia National Laboratories
Technical Report SAND2021-11380.
12.
Crane
,
N. K.
,
Day
,
D. M.
,
Hardesty
,
S.
,
Lindsay
,
P.
, and
Stevens
,
B. L.
,
2020
, “
Sierra/SD—User’s Manual—4.56
,”
Sandia National Laboratories
Technical Report SAND2020-3828.
13.
Beale
,
D.
,
Owens
,
B.
, and
Schultz
,
R.
,
2020
, “
Analysis of Full-Field Response From a Multi-Shaker Test
,”
Proceedings of IMAC XXXVIII
,
Houston, TX
,
Feb. 10–13
, pp.
129
132
.
14.
Rohe
,
D. P.
,
Smith
,
S.
,
Brake
,
M. R.
,
DeClerck
,
J.
,
Blanco
,
M. A.
,
Schoenherr
,
T. F.
, and
Skousen
,
T. J.
,
2019
, “
Testing Summary for the Box Assembly With Removable Component Structure
,”
Proceedings of IMAC XXXVII
,
Orlando, FL
,
Jan. 28–31
, pp.
167
177
.
15.
CUBIT Development Team
,
2021
, “
CUBIT Geometry and Mesh Generation Toolkit 15.8 User Documentation
,”
Sandia National Laboratories
Technical Report: SAND2021-5152 W.
16.
Allemang
,
R. J.
,
1982
, “
A Correlation Coefficient for Modal Vector Analysis
,”
Proceedings of the International Modal Analysis Conference
,
Orlando, FL
,
Nov. 8–10
, pp.
110
116
.
17.
Csurcsia
,
P. Z.
,
Peeters
,
B.
,
Schoukens
,
J.
, and
De Troyer
,
T.
,
2020
, “
Simplified Analysis for Multiple Input Systems: A Toolbox Study Illustrated on F-16 Measurements
,”
Vibration
,
3
(
2
), pp.
70
84
.
You do not currently have access to this content.