0


Research Papers

J Biomech Eng. 2016;138(8):081001-081001-11. doi:10.1115/1.4033673.

Though walking impairments are prevalent in society, clinical treatments are often ineffective at restoring lost function. For this reason, researchers have begun to explore the use of patient-specific computational walking models to develop more effective treatments. However, the accuracy with which models can predict internal body forces in muscles and across joints depends on how well relevant model parameter values can be calibrated for the patient. This study investigated how knowledge of internal knee contact forces affects calibration of neuromusculoskeletal model parameter values and subsequent prediction of internal knee contact and leg muscle forces during walking. Model calibration was performed using a novel two-level optimization procedure applied to six normal walking trials from the Fourth Grand Challenge Competition to Predict In Vivo Knee Loads. The outer-level optimization adjusted time-invariant model parameter values to minimize passive muscle forces, reserve actuator moments, and model parameter value changes with (Approach A) and without (Approach B) tracking of experimental knee contact forces. Using the current guess for model parameter values but no knee contact force information, the inner-level optimization predicted time-varying muscle activations that were close to experimental muscle synergy patterns and consistent with the experimental inverse dynamic loads (both approaches). For all the six gait trials, Approach A predicted knee contact forces with high accuracy for both compartments (average correlation coefficient r = 0.99 and root mean square error (RMSE) = 52.6 N medial; average r = 0.95 and RMSE = 56.6 N lateral). In contrast, Approach B overpredicted contact force magnitude for both compartments (average RMSE = 323 N medial and 348 N lateral) and poorly matched contact force shape for the lateral compartment (average r = 0.90 medial and −0.10 lateral). Approach B had statistically higher lateral muscle forces and lateral optimal muscle fiber lengths but lower medial, central, and lateral normalized muscle fiber lengths compared to Approach A. These findings suggest that poorly calibrated model parameter values may be a major factor limiting the ability of neuromusculoskeletal models to predict knee contact and leg muscle forces accurately for walking.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2016;138(8):081002-081002-8. doi:10.1115/1.4033678.

The normal knee joint maintains stable motion during activities of daily living. After total knee arthroplasty (TKA), stability is achieved by the conformity of the bearing surfaces of the implant components, ligaments, and constraint structures incorporated in the implant design. The large, rectangular tibial post in constrained condylar knee (CCK) arthroplasty, often used in revision surgery, provides added stability, but increases susceptibility to polyethylene wear as it contacts the intercondylar box on the femoral component. We examined coronal plane stability to understand the relative contributions of the mechanisms that act to stabilize the CCK knee under varus–valgus loading, namely, load distribution between the medial and lateral condyles, contact of the tibial post with the femoral intercondylar box, and elongation of the collateral ligaments. A robot testing system was used to determine the joint stability in human cadaveric knees as described by the moment versus angular rotation behavior under varus–valgus moments at 0 deg, 30 deg, and 90 deg of flexion. The angular rotation of the CCK knee in response to the physiological moments was limited to ≤1.5 deg. The primary stabilizing mechanism was the redistribution of the contact force on the bearing surfaces. Contact between the tibial post and the femoral box provided a secondary stabilizing mechanism after lift-off of a condyle had occurred. Collateral ligaments provide limited stability because little ligament elongation occurred under such small angular rotations. Compressive loads applied across the knee joint, such as would occur with the application of muscle forces, enhanced the ability of the bearing surfaces to provide resisting internal varus–valgus moment and, thus, reduced the exposure of the tibial post to the external varus–valgus loads. Our results suggest that the CCK stability can be refined by considering both the geometry of the bearing surfaces and the contacting geometry between the tibial post and femoral box.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2016;138(8):081003-081003-7. doi:10.1115/1.4033794.

Clinically, spinal cord injuries (SCIs) are radiographically evaluated and diagnosed from plain radiographs, computed tomography (CT), and magnetic resonance imaging. However, it is difficult to conclude that radiographic evaluation of SCI can directly explain the fundamental mechanism of spinal cord damage. The von-Mises stress and maximum principal strain are directly associated with neurological damage in the spinal cord from a biomechanical viewpoint. In this study, the von-Mises stress and maximum principal strain in the spinal cord as well as the cord cross-sectional area (CSA) were analyzed under various magnitudes for contusion, dislocation, and distraction SCI mechanisms, using a finite-element (FE) model of the cervical spine with spinal cord including white matter, gray matter, dura mater with nerve roots, and cerebrospinal fluid (CSF). A regression analysis was performed to find correlation between peak von-Mises stress/peak maximum principal strain at the cross section of the highest reduction in CSA and corresponding reduction in CSA of the cord. Dislocation and contusion showed greater peak stress and strain values in the cord than distraction. The substantial increases in von-Mises stress as well as CSA reduction similar to or more than 30% were produced at a 60% contusion and a 60% dislocation, while the maximum principal strain was gradually increased as injury severity elevated. In addition, the CSA reduction had a strong correlation with peak von-Mises stress/peak maximum principal strain for the three injury mechanisms, which might be fundamental information in elucidating the relationship between radiographic and mechanical parameters related to SCI.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2016;138(8):081004-081004-8. doi:10.1115/1.4033882.

Modeling complex knee biomechanics is a continual challenge, which has resulted in many models of varying levels of quality, complexity, and validation. Beyond modeling healthy knees, accurately mimicking pathologic knee mechanics, such as after cruciate rupture or meniscectomy, is difficult. Experimental tests of knee laxity can provide important information about ligament engagement and overall contributions to knee stability for development of subject-specific models to accurately simulate knee motion and loading. Our objective was to provide combined experimental tests and finite-element (FE) models of natural knee laxity that are subject-specific, have one-to-one experiment to model calibration, simulate ligament engagement in agreement with literature, and are adaptable for a variety of biomechanical investigations (e.g., cartilage contact, ligament strain, in vivo kinematics). Calibration involved perturbing ligament stiffness, initial ligament strain, and attachment location until model-predicted kinematics and ligament engagement matched experimental reports. Errors between model-predicted and experimental kinematics averaged <2 deg during varus–valgus (VV) rotations, <6 deg during internal–external (IE) rotations, and <3 mm of translation during anterior–posterior (AP) displacements. Engagement of the individual ligaments agreed with literature descriptions. These results demonstrate the ability of our constraint models to be customized for multiple individuals and simultaneously call attention to the need to verify that ligament engagement is in good general agreement with literature. To facilitate further investigations of subject-specific or population based knee joint biomechanics, data collected during the experimental and modeling phases of this study are available for download by the research community.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2016;138(8):081005-081005-11. doi:10.1115/1.4033917.

An extensive multiaxial experimental campaign on the monotonic, time- and history-dependent mechanical response of bovine Glisson's capsule (GC) is presented. Reproducible characteristics were observed such as J-shaped curves in uniaxial and biaxial configurations, large lateral contraction, cyclic tension softening, large tension relaxation, and moderate creep strain accumulation. The substantial influence of the reference state selection on the kinematic response and the tension versus stretch curves is demonstrated and discussed. The parameters of a large-strain viscoelastic constitutive model were determined based on the data of uniaxial tension relaxation experiments. The model is shown to well predict the uniaxial and biaxial viscoelastic responses in all other configurations. GC, the corresponding model, and the experimental protocols are proposed as a useful basis for future studies on the relation between microstructure and tissue functionality and on the factors influencing the mechanical response of soft collagenous membranes.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2016;138(8):081006-081006-11. doi:10.1115/1.4033915.

Filiform mechanosensory hairs of crickets are of great interest to engineers because of the hairs' highly sensitive response to low-velocity air-currents. In this study, we analyze the biomechanical properties of filiform hairs of the cercal sensory system of a common house cricket. The cercal sensory system consists of two antennalike appendages called cerci that are situated at the rear of the cricket's abdomen. Each cercus is covered with 500–750 flow sensitive filiform mechanosensory hairs. Each hair is embedded in a complex viscoelastic socket that acts as a spring and dashpot system and guides the movement of the hair. When a hair deflects due to the drag force induced on its length by a moving air-current, the spiking activity of the neuron that innervates the hair changes and the combined spiking activity of all hairs is extracted by the cercal sensory system. Filiform hairs have been experimentally studied by researchers, though the basis for the hairs' biomechanical characteristics is not fully understood. The socket structure has not been analyzed experimentally or theoretically from a mechanical standpoint, and the characterization that exists is mathematical in nature and only provides a very rudimentary approximation of the socket's spring nature. This study aims to understand and physically characterize the socket's behavior and interaction with the filiform hair by examining hypotheses about the hair and socket biomechanics. A three-dimensional computer-aided design (CAD) model was first created using confocal microscopy images of the hair and socket structure of the cricket, and then finite-element analyses (FEAs) based on the physical conditions that the insect experiences were simulated. The results show that the socket can act like a spring; however, it has two-tier rotational spring constants during pre- and postcontacts of iris and hair bulge due to its constitutive nonstandard geometric shapes.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2016;138(8):081007-081007-7. doi:10.1115/1.4033916.

To assess how posture affects the transmission of mechanical energy up the spinal column during vibration, 18 porcine functional spinal units (FSUs) were exposed to a sinusoidal force (1500 ± 1200 N) at 5 Hz for 120 min in either a flexed, extended, or neutral posture. Force and FSU height were measured continuously throughout the collection. From these data, specimen height loss, dynamic stiffness, hysteresis, and parameters from a standard linear solid (SLS) model were determined and analyzed for differences between postures. Posture had an influence on all of these parameters. In extension, the FSU had higher dynamic stiffness values than when neutral or flexed (p < 0.0001). In flexion, the FSU had higher hysteresis than both an extended or neutral posture (p < 0.0001). Height loss was greatest in a flexed posture and smallest in an extended posture (p < 0.0001). In extension, the series spring element in the SLS model had a stiffness value higher than both flexed and neutral posture conditions, whereas the stiffness in the parallel spring was the same between extension and neutral (p < 0.01), both higher than in flexion. Viscosity coefficients were highest in extension compared to both flexed and neutral (p < 0.01). Based on these results, it was determined that posture had a significant influence in determining the mechanical properties of the spine when exposed to cyclic compressive loading.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2016;138(8):081008-081008-13. doi:10.1115/1.4033986.

Stroke caused by an embolism accounts for about a third of all stroke cases. Understanding the source and cause of the embolism is critical for diagnosis and long-term treatment of such stroke cases. The complex nature of the transport of an embolus within large arteries is a primary hindrance to a clear understanding of embolic stroke etiology. Recent advances in medical image-based computational hemodynamics modeling have rendered increasing utility to such techniques as a probe into the complex flow and transport phenomena in large arteries. In this work, we present a novel, patient-specific, computational framework for understanding embolic stroke etiology, by combining image-based hemodynamics with discrete particle dynamics and a sampling-based analysis. The framework allows us to explore the important question of how embolism source manifests itself in embolus distribution across the various major cerebral arteries. Our investigations illustrate prominent numerical evidence regarding (i) the size/inertia-dependent trends in embolus distribution to the brain; (ii) the relative distribution of cardiogenic versus aortogenic emboli among the anterior, middle, and posterior cerebral arteries; (iii) the left versus right brain preference in cardio-emboli and aortic-emboli transport; and (iv) the source–destination relationship for embolisms affecting the brain.

Commentary by Dr. Valentin Fuster

Technical Brief

J Biomech Eng. 2016;138(8):084501-084501-3. doi:10.1115/1.4033719.

The aim of this study was to evaluate eight methods for aligning the orientation of two different local coordinate systems. Alignment is very important when combining two different systems of motion analysis. Two of the methods were developed specifically for biomechanical studies, and because there have been at least three decades of algorithm development in robotics, it was decided to include six methods from this field. To compare these methods, an Xsens sensor and two Optotrak clusters were attached to a Plexiglas plate. The first optical marker cluster was fixed on the sensor and 20 trials were recorded. The error of alignment was calculated for each trial, and the mean, the standard deviation, and the maximum values of this error over all trials were reported. One-way repeated measures analysis of variance revealed that the alignment error differed significantly across the eight methods. Post-hoc tests showed that the alignment error from the methods based on angular velocities was significantly lower than for the other methods. The method using angular velocities performed the best, with an average error of 0.17 ± 0.08 deg. We therefore recommend this method, which is easy to perform and provides accurate alignment.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In