0


Research Papers

J Biomech Eng. 2015;138(1):011001-011001-12. doi:10.1115/1.4031847.

Cardiovascular disease (CVD) is the leading cause of death for Americans. As coronary artery bypass graft surgery (CABG) remains a mainstay of therapy for CVD and native vein grafts are limited by issues of supply and lifespan, an effective readily available tissue-engineered vascular graft (TEVG) for use in CABG would provide drastic improvements in patient care. Biomechanical mismatch between vascular grafts and native vasculature has been shown to be the major cause of graft failure, and therefore, there is need for compliance-matched biocompatible TEVGs for clinical implantation. The current study investigates the biaxial mechanical characterization of acellular electrospun glutaraldehyde (GLUT) vapor-crosslinked gelatin/fibrinogen cylindrical constructs, using a custom-made microbiaxial optomechanical device (MOD). Constructs crosslinked for 2, 8, and 24 hrs are compared to mechanically characterized porcine left anterior descending coronary (LADC) artery. The mechanical response data were used for constitutive modeling using a modified Fung strain energy equation. The results showed that constructs crosslinked for 2 and 8 hrs exhibited circumferential and axial tangential moduli (ATM) similar to that of the LADC. Furthermore, the 8-hrs experimental group was the only one to compliance-match the LADC, with compliance values of 0.0006±0.00018 mm Hg−1 and 0.00071±0.00027 mm Hg−1, respectively. The results of this study show the feasibility of meeting mechanical specifications expected of native arteries through manipulating GLUT vapor crosslinking time. The comprehensive mechanical characterization of cylindrical biopolymer constructs in this study is an important first step to successfully develop a biopolymer compliance-matched TEVG.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2015;138(1):011002-011002-7. doi:10.1115/1.4031938.

The study presents a numerical methodology for minimizing the bone loss in human femur submitted to total hip replacement (THR) procedure with focus on cemented femoral stem. Three-dimensional computational models were used to describe the femoral bone behavior. An optimization procedure using the genetic algorithm (GA) method was applied in order to minimize the bone loss, considering the geometry and the material of the prosthesis as well as the design of the stem. Internal and external bone remodeling were analyzed numerically. The numerical method proposed here showed that the bone mass loss could be reduced by 24%, changing the design parameters.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2015;138(1):011003-011003-12. doi:10.1115/1.4031977.

Two-dimensional echocardiography (echo) is the method of choice for noninvasive evaluation of the left ventricle (LV) function owing to its low cost, fast acquisition time, and high temporal resolution. However, it only provides the LV boundaries in discrete 2D planes, and the 3D LV geometry needs to be reconstructed from those planes to quantify LV wall motion, acceleration, and strain, or to carry out flow simulations. An automated method is developed for the reconstruction of the 3D LV endocardial surface using echo from a few standard cross sections, in contrast with the previous work that has used a series of 2D scans in a linear or rotational manner for 3D reconstruction. The concept is based on a generalized approach so that the number or type (long-axis (LA) or short-axis (SA)) of sectional data is not constrained. The location of the cross sections is optimized to minimize the difference between the reconstructed and measured cross sections, and the reconstructed LV surface is meshed in a standard format. Temporal smoothing is implemented to smooth the motion of the LV and the flow rate. This software tool can be used with existing clinical 2D echo systems to reconstruct the 3D LV geometry and motion to quantify the regional akinesis/dyskinesis, 3D strain, acceleration, and velocities, or to be used in ventricular flow simulations.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2015;138(1):011004-011004-7. doi:10.1115/1.4032054.

Accurate hip joint center (HJC) location is critical when studying hip joint biomechanics. The HJC is often determined from anatomical methods, but functional methods are becoming increasingly popular. Several studies have examined these methods using simulations and in vivo gait data, but none has studied high-range of motion activities, such a chair rise, nor has HJC prediction been compared between males and females. Furthermore, anterior superior iliac spine (ASIS) marker visibility during chair rise can be problematic, requiring a sacral cluster as an alternative proximal segment; but functional HJC has not been explored using this approach. For this study, the quality of HJC measurement was based on the joint gap error (JGE), which is the difference in global HJC between proximal and distal reference segments. The aims of the present study were to: (1) determine if JGE varies between pelvic and sacral referenced HJC for functional and anatomical methods, (2) investigate which functional calibration motion results in the lowest JGE and if the JGE varies depending on movement type (gait versus chair rise) and gender, and (3) assess whether the functional HJC calibration results in lower JGE than commonly used anatomical approaches and if it varies with movement type and gender. Data were collected on 39 healthy adults (19 males and 20 females) aged 14–50 yr old. Participants performed four hip “calibration” tests (arc, cross, star, and star-arc), as well as gait and chair rise (activities of daily living (ADL)). Two common anatomical methods were used to estimate HJC and were compared to HJC computed using a published functional method with the calibration motions above, when using pelvis or sacral cluster as the proximal reference. For ADL trials, functional methods resulted in lower JGE (12–19 mm) compared to anatomical methods (13–34 mm). It was also found that women had significantly higher JGE compared to men and JGE was significantly higher for chair rise compared to gait, across all methods. JGE for sacrum referenced HJC was consistently higher than for the pelvis, but only by 2.5 mm. The results indicate that dynamic hip range of movement and gender are significant factors in HJC quality. The findings also suggest that a rigid sacral cluster for HJC estimation is an acceptable alternative for relying solely on traditional pelvis markers.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2015;138(1):011005-011005-6. doi:10.1115/1.4032057.

When developing high-fidelity computational model of vocal fold vibration for voice production of individuals, one would run into typical issues of unknown model parameters and model validation of individual-specific characteristics of phonation. In the current study, the evoked rabbit phonation is adopted to explore some of these issues. In particular, the mechanical properties of the rabbit's vocal fold tissue are unknown for individual subjects. In the model, we couple a 3D vocal fold model that is based on the magnetic resonance (MR) scan of the rabbit larynx and a simple one-dimensional (1D) model for the glottal airflow to perform fast simulations of the vocal fold dynamics. This hybrid three-dimensional (3D)/1D model is then used along with the experimental measurement of each individual subject for determination of the vocal fold properties. The vibration frequency and deformation amplitude from the final model are matched reasonably well for individual subjects. The modeling and validation approaches adopted here could be useful for future development of subject-specific computational models of vocal fold vibration.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2015;138(1):011006-011006-8. doi:10.1115/1.4032047.

A method for estimating gait parameters (shank, thigh, and stance leg angles) from a single, in situ, scalar acceleration measurement is presented. A method for minimizing the impact of errors due to unpredictable variations in muscle actuation and acceleration measurement biases is developed. This is done by determining the most probable gait progression by minimization of a cost function that reflects the size of errors in the gait parameters. In addition, a model for gait patterns that takes into account their variations due to walking speed is introduced and used. The approach is tested on data collected from subjects in a gait study. The approach can estimate limb angles with errors less than 6 deg (one standard deviation) and, thus, is suitable for many envisioned gait monitoring applications in nonlaboratory settings.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2015;138(1):011007-011007-13. doi:10.1115/1.4032051.

Advances in volumetric medical imaging techniques allowed the subject-specific modeling of the bronchial flow through the first few generations of the central airways using computational fluid dynamics (CFD). However, a reliable CFD prediction of the bronchial flow requires modeling of the inhomogeneous deformation of the central airways during breathing. This paper addresses this issue by introducing two models of the central airways motion. The first model utilizes a node-to-node mapping between the discretized geometries of the central airways generated from a number of successive computed tomography (CT) images acquired dynamically (without breath hold) over the breathing cycle of two Sprague-Dawley rats. The second model uses a node-to-node mapping between only two discretized airway geometries generated from the CT images acquired at end-exhale and at end-inhale along with the ventilator measurement of the lung volume change. The advantage of this second model is that it uses just one pair of CT images, which more readily complies with the radiation dosage restrictions for humans. Three-dimensional computer aided design geometries of the central airways generated from the dynamic-CT images were used as benchmarks to validate the output from the two models at sampled time-points over the breathing cycle. The central airway geometries deformed by the first model showed good agreement to the benchmark geometries within a tolerance of 4%. The central airway geometry deformed by the second model better approximated the benchmark geometries than previous approaches that used a linear or harmonic motion model.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2015;138(1):011008-011008-10. doi:10.1115/1.4032071.

This paper studies the modeling of lower extremity muscle forces and their correlation to neuromuscular fatigue. Two analytical fatigue models were combined with a musculoskeletal model to estimate the effects of hamstrings fatigue on lower extremity muscle forces during a side step cut. One of the fatigue models (Tang) used subject-specific knee flexor muscle fatigue and recovery data while the second model (Xia) used previously established fatigue and recovery parameters. Both fatigue models were able to predict hamstrings fatigue within 20% of the experimental data, with the semimembranosus and semitendinosus muscles demonstrating the largest (11%) and smallest (1%) differences, respectively. In addition, various hamstrings fatigue levels (10–90%) on lower extremity muscle force production were assessed using one of the analytical fatigue models. As hamstrings fatigue levels increased, the quadriceps muscle forces decreased by 21% (p < 0.01), while gastrocnemius muscle forces increased by 36% (p < 0.01). The results of this study validate the use of two analytical fatigue models in determining the effects of neuromuscular fatigue during a side step cut, and therefore, this model can be used to assess fatigue effects on risk of lower extremity injury during athletic maneuvers. Understanding the effects of fatigue on muscle force production may provide insight on muscle group compensations that may lead to altered lower extremity motion patterns as seen in noncontact anterior cruciate ligament (ACL) injuries.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2015;138(1):011009-011009-6. doi:10.1115/1.4032055.

Car accident simulations involving pregnant women are well documented in the literature and suggest that intra-uterine pressure could be responsible for the phenomenon of placental abruption, underlining the need for a realistic amniotic fluid model, including fluid–structure interactions (FSI). This study reports the development and validation of an amniotic fluid model using an Arbitrary Lagrangian Eulerian formulation in the LS-DYNA environment. Dedicated to the study of the mechanisms responsible for fetal injuries resulting from road accidents, the fluid model was validated using dynamic loading tests. Drop tests were performed on a deformable water-filled container at acceleration levels that would be experienced in a gravid uterus during a frontal car collision at 25 kph. During the test device braking phase, container deformation induced by inertial effects and FSI was recorded by kinematic analysis. These tests were then simulated in the LS-DYNA environment to validate a fluid model under dynamic loading, based on the container deformations. Finally, the coupling between the amniotic fluid model and an existing finite-element full-body pregnant woman model was validated in terms of pressure. To do so, experimental test results performed on four postmortem human surrogates (PMHS) (in which a physical gravid uterus model was inserted) were used. The experimental intra-uterine pressure from these tests was compared to intra uterine pressure from a numerical simulation performed under the same loading conditions. Both free fall numerical and experimental responses appear strongly correlated. The relationship between the amniotic fluid model and pregnant woman model provide intra-uterine pressure values correlated with the experimental test responses. The use of an Arbitrary Lagrangian Eulerian formulation allows the analysis of FSI between the amniotic fluid and the gravid uterus during a road accident involving pregnant women.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2015;138(1):011010-011010-8. doi:10.1115/1.4032053.

This study focuses on thermomechanical effects in cryopreservation associated with a novel approach of volumetric heating by means on nanoparticles in an alternating electromagnetic field. This approach is studied for the application of cryopreservation by vitrification, where the crystalline phase is completely avoided—the cornerstone of cryoinjury. Vitrification can be achieved by quickly cooling the material to cryogenic storage, where ice cannot form. Vitrification can be maintained at the end of the cryogenic protocol by quickly rewarming the material back to room temperature. The magnitude of the rewarming rates necessary to maintain vitrification is much higher than the magnitude of the cooling rates that are required to achieve it in the first place. The most common approach to achieve the required cooling and rewarming rates is by exposing the specimen's surface to a temperature-controlled environment. Due to the underlying principles of heat transfer, there is a size limit in the case of surface heating beyond which crystallization cannot be prevented at the center of the specimen. Furthermore, due to the underlying principles of solid mechanics, there is a size limit beyond which thermal expansion in the specimen can lead to structural damage and fractures. Volumetric heating during the rewarming phase of the cryogenic protocol can alleviate these size limitations. This study suggests that volumetric heating can reduce thermomechanical stress, when combined with an appropriate design of the thermal protocol. Without such design, this study suggests that the level of stress may still lead to structural damage even when volumetric heating is applied. This study proposes strategies to harness nanoparticles heating in order to reduce thermomechanical stress in cryopreservation by vitrification.

Commentary by Dr. Valentin Fuster

Technical Brief

J Biomech Eng. 2015;138(1):014501-014501-4. doi:10.1115/1.4031976.

A finite element (FE) elbow model was developed to predict the contact stress and contact area of the native humeroradial joint. The model was validated using Fuji pressure sensitive film with cadaveric elbows for which axial loads of 50, 100, and 200 N were applied through the radial head. Maximum contact stresses ranged from 1.7 to 4.32 MPa by FE predictions and from 1.34 to 3.84 MPa by pressure sensitive film measurement while contact areas extended from 39.33 to 77.86 mm2 and 29.73 to 83.34 mm2 by FE prediction and experimental measurement, respectively. Measurements from cadaveric testing and FE predictions showed the same patterns in both the maximum contact stress and contact area, as another demonstration of agreement. While measured contact pressures and contact areas validated the FE predictions, computed maximum stresses and contact area tended to overestimate the maximum contact stress and contact area.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2015;138(1):014502-014502-11. doi:10.1115/1.4031486.

We developed a balance measurement tool (the balanced reach test (BRT)) to assess standing balance while reaching and pointing to a target moving in three-dimensional space according to a sum-of-sines function. We also developed a three-dimensional, 13-segment biomechanical model to analyze performance in this task. Using kinematic and ground reaction force (GRF) data from the BRT, we performed an inverse dynamics analysis to compute the forces and torques applied at each of the joints during the course of a 90 s test. We also performed spectral analyses of each joint's force activations. We found that the joints act in a different but highly coordinated manner to accomplish the tracking task—with individual joints responding congruently to different portions of the target disk's frequency spectrum. The test and the model also identified clear differences between a young healthy subject (YHS), an older high fall risk (HFR) subject before participating in a balance training intervention; and in the older subject's performance after training (which improved to the point that his performance approached that of the young subject). This is the first phase of an effort to model the balance control system with sufficient physiological detail and complexity to accurately simulate the multisegmental control of balance during functional reach across the spectra of aging, medical, and neurological conditions that affect performance. Such a model would provide insight into the function and interaction of the biomechanical and neurophysiological elements making up this system; and system adaptations to changes in these elements' performance and capabilities.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2015;138(1):014503-014503-10. doi:10.1115/1.4032056.

Wall shear stress (WSS) is one of the most studied hemodynamic parameters, used in correlating blood flow to various diseases. The pulsatile nature of blood flow, along with the complex geometries of diseased arteries, produces complicated temporal and spatial WSS patterns. Moreover, WSS is a vector, which further complicates its quantification and interpretation. The goal of this study is to investigate WSS magnitude, angle, and vector changes in space and time in complex blood flow. Abdominal aortic aneurysm (AAA) was chosen as a setting to explore WSS quantification. Patient-specific computational fluid dynamics (CFD) simulations were performed in six AAAs. New WSS parameters are introduced, and the pointwise correlation among these, and more traditional WSS parameters, was explored. WSS magnitude had positive correlation with spatial/temporal gradients of WSS magnitude. This motivated the definition of relative WSS gradients. WSS vectorial gradients were highly correlated with magnitude gradients. A mix WSS spatial gradient and a mix WSS temporal gradient are proposed to equally account for variations in the WSS angle and magnitude in single measures. The important role that WSS plays in regulating near wall transport, and the high correlation among some of the WSS parameters motivates further attention in revisiting the traditional approaches used in WSS characterizations.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2015;138(1):014504-014504-5. doi:10.1115/1.4032058.

Measures of scapulothoracic motion are dependent on accurate imaging of the scapula and thorax. Advanced radiographic techniques can provide accurate measures of scapular motion, but the limited 3D imaging volume of these techniques often precludes measurement of thorax motion. To overcome this, a thorax coordinate system was defined based on the position of rib pairs and then compared to a conventional sternum/spine-based thorax coordinate system. Alignment of the rib-based coordinate system was dependent on the rib pairs used, with the rib3:rib4 pairing aligned to within 4.4 ± 2.1 deg of the conventional thorax coordinate system.

Topics: Rotation , Imaging
Commentary by Dr. Valentin Fuster
J Biomech Eng. 2015;138(1):014505-014505-5. doi:10.1115/1.4032060.

Coronary heart disease is a leading cause of death among Americans for which coronary artery bypass graft (CABG) surgery is a standard surgical treatment. The success of CABG surgery is impaired by a compliance mismatch between vascular grafts and native vessels. Tissue engineered vascular grafts (TEVGs) have the potential to be compliance matched and thereby reduce the risk of graft failure. Glutaraldehyde (GLUT) vapor-crosslinked gelatin/fibrinogen constructs were fabricated and mechanically tested in a previous study by our research group at 2, 8, and 24 hrs of GLUT vapor exposure. The current study details a computational method that was developed to predict the material properties of our constructs for crosslinking times between 2 and 24 hrs by interpolating the 2, 8, and 24 hrs crosslinking time data. matlab and abaqus were used to determine the optimal combination of fabrication parameters to produce a compliance matched construct. The validity of the method was tested by creating a 16-hr crosslinked construct of 130 μm thickness and comparing its compliance to that predicted by the optimization algorithm. The predicted compliance of the 16-hr construct was 0.00059 mm Hg−1 while the experimentally determined compliance was 0.00065 mm Hg−1, a relative difference of 9.2%. Prior data in our laboratory has shown the compliance of the left anterior descending porcine coronary (LADC) artery to be 0.00071 ± 0.0003 mm Hg−1. Our optimization algorithm predicts that a 258-μm-thick construct that is GLUT vapor crosslinked for 8.1 hrs would match LADC compliance. This result is consistent with our previous work demonstrating that an 8-hr GLUT vapor crosslinked construct produces a compliance that is not significantly different from a porcine coronary LADC.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In