0


Research Papers

J Biomech Eng. 2009;131(5):051001-051001-10. doi:10.1115/1.3078151.

Although the catapult phase of pilot ejections has been well characterized in terms of human response to compressive forces, the effect of the forces on the human body during the ensuing ejection phases (including windblast and parachute opening shock) has not been thoroughly investigated. Both windblast and parachute opening shock have been shown to induce dynamic tensile forces in the human cervical spine. However, the human tolerance to such loading is not well known. Therefore, the main objective of this research project was to measure human tensile neck failure mechanics to provide data for computational modeling, anthropometric test device development, and improved tensile injury criteria. Twelve human cadaver specimens, including four females and eight males with a mean age of 50.1±9years, were subjected to dynamic tensile loading through the musculoskeletal neck until failure occurred. Failure load, failure strain, and tensile stiffness were measured and correlated with injury type and location. The mean failure load for the 12 specimens was 3100±645N, mean failure strain was 16.7±5.4%, and mean tensile stiffness was 172±54.5N/mm. The majority of injuries (8) occurred in the upper cervical spine (Oc-C3), and none took place in the midcervical region (C3–C5). The results of this study assist in filling the existing void in dynamic tensile injury data and will aid in developing improved neck injury prevention strategies.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2009;131(5):051002-051002-11. doi:10.1115/1.3078159.

Knowledge of the behavior and mechanics of a total knee replacement (TKR) in an in vivo environment is key to optimizing the functional outcomes of the implant procedure. Computational modeling has shown to be an important tool for investigating biomechanical variables that are difficult to address experimentally. To assist in examining TKR mechanics, a dynamic finite-element model of a TKR is presented. The objective of the study was to develop and evaluate a model that could simulate full knee motion using a physiologically consistent quadriceps action, without prescribed joint kinematics. The model included tibiofemoral (TFJs) and patellofemoral joints (PFJs), six major ligament bundles and was driven by a uni-axial representation of a quadricep muscle. An initial parameter screening analysis was performed to assess the relative importance of 31 different model parameters. This analysis showed that ligament insertion location and initial ligament strain were significant factors affecting simulated joint kinematics and loading, with the contact friction coefficient playing a lesser role and ligament stiffness having little effect. The model was then used to simulate in vitro experiments utilizing a flexed-knee-stance testing rig. General model performance was assessed by comparing simulation results with experimentally measured kinematics and tibial reaction forces collected from two implanted specimens. The simulations were able to reproduce experimental differences observed between the test specimens and were able to accurately predict trends seen in the tibial reaction loads. The simulated kinematics of the TFJ and PFJ were less consistent when compared with experimental data but still reproduced many trends.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2009;131(5):051003-051003-12. doi:10.1115/1.3049862.

Aseptic loosening from polyethylene debris is the leading cause of failure for metal-on-polyethylene hip implants. The accumulation of wear debris can lead to osteolysis, the degradation of bone surrounding the implant components. In the present study, a parametric three-dimensional finite element model of an uncemented total hip replacement prosthesis was constructed and implanted into a femur model constructed from computed tomography (CT) scan data. Design optimization was performed considering volumetric wear as an objective function using a computational model validated in a previous study through in vitro wear assessment. Constraints were used to maintain the physiological range of motion of wear-optimum designs. Loading conditions for both walking and stair climbing were considered in the analysis. In addition, modification of the acetabular liner surface nodes was performed in discrete intervals to reflect the actual wear and creep damage occurring on the liner surface. Stair climbing was found to produce 49% higher volumetric wear than walking. Using a sensitivity analysis, it was found that the objective function sensitivity to the chosen design variables was identical for both walking and stair climbing. The greatest reduction in volumetric wear achieved while maintaining a physiological range of motion was 16%. It was found that including nodal modification in the sensitivity analysis produced little or no difference in the sensitivity analysis results due to the linear nature of volumetric wear progression. Thus, nodal modification was not used in optimization. An increase in the maximum contact pressure was observed for all wear-optimized designs, and an increase in head-liner penetration was found to be related to a reduction in volumetric wear.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2009;131(5):051004-051004-11. doi:10.1115/1.3078177.

Collagen is a key structural protein in the extracellular matrix of many tissues. It provides biological tissues with tensile mechanical strength and is enzymatically cleaved by a class of matrix metalloproteinases known as collagenases. Collagen enzymatic kinetics has been well characterized in solubilized, gel, and reconstituted forms. However, limited information exists on enzyme degradation of structurally intact collagen fibers and, more importantly, on the effect of mechanical deformation on collagen cleavage. We studied the degradation of native rat tail tendon fibers by collagenase after the fibers were mechanically elongated to strains of ε=110%. After the fibers were elongated and the stress was allowed to relax, the fiber was immersed in Clostridium histolyticum collagenase and the decrease in stress (σ) was monitored as a means of calculating the rate of enzyme cleavage of the fiber. An enzyme mechanokinetic (EMK) relaxation function TE(ε) in s1 was calculated from the linear stress-time response during fiber cleavage, where TE(ε) corresponds to the zero order Michaelis–Menten enzyme-substrate kinetic response. The EMK relaxation function TE(ε) was found to decrease with applied strain at a rate of 9% per percent strain, with complete inhibition of collagen cleavage predicted to occur at a strain of 11%. However, comparison of the EMK response (TE versus ε) to collagen’s stress-strain response (σ versus ε) suggested the possibility of three different EMK responses: (1) constant TE(ε) within the toe region (ε<3%), (2) a rapid decrease (50%) in the transition of the toe-to-heel region (ε3%) followed by (3) a constant value throughout the heel (ε=35%) and linear (ε=510%) regions. This observation suggests that the mechanism for the strain-dependent inhibition of enzyme cleavage of the collagen triple helix may be by a conformational change in the triple helix since the decrease in TE(ε) appeared concomitant with stretching of the collagen molecule.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2009;131(5):051005-051005-9. doi:10.1115/1.3049527.

Mechanical cues modulate fibroblast tractional forces and remodeling of extracellular matrix in healthy tissue, healing wounds, and engineered matrices. The goal of the present study is to establish dose-response relationships between stretch parameters (magnitude and duration per day) and matrix remodeling metrics (compaction, strength, extensibility, collagen content, contraction, and cellularity). Cyclic equibiaxial stretch of 2–16% was applied to fibroblast-populated fibrin gels for either 6 h or 24 h/day for 8 days. Trends in matrix remodeling metrics as a function of stretch magnitude and duration were analyzed using regression analysis. The compaction and ultimate tensile strength of the tissues increased in a dose-dependent manner with increasing stretch magnitude, yet remained unaffected by the duration in which they were cycled (6 h/day versus 24 h/day). Collagen density increased exponentially as a function of both the magnitude and duration of stretch, with samples stretched for the reduced duration per day having the highest levels of collagen accumulation. Cell number and failure tension were also dependent on both the magnitude and duration of stretch, although stretch-induced increases in these metrics were only present in the samples loaded for 6 h/day. Our results indicate that both the magnitude and the duration per day of stretch are critical parameters in modulating fibroblast remodeling of the extracellular matrix, and that these two factors regulate different aspects of this remodeling. These findings move us one step closer to fully characterizing culture conditions for tissue equivalents, developing improved wound healing treatments and understanding tissue responses to changes in mechanical environments during growth, repair, and disease states.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2009;131(5):051006-051006-10. doi:10.1115/1.3078188.

This study proposes a mathematical model for studying stability of arteries subjected to a longitudinal extension and a periodic pressure. An artery was considered as a straight composite beam comprised of an external thick-walled tube and a fluid core. The dynamic criterion for stability was used, based on analyzing the small transverse vibrations superposed on the finite deformation of the vessel under static load. In contrast to the case of a static pressurization, in which buckling is only possible if the load produces a critical axial compressive force, a loss of stability of arteries under periodic pressure occurs under many combinations of load parameters. Instability occurs as a parametric resonance characterized by an exponential increase in the amplitude of transverse vibrations over several bands of pressure frequencies. The effects of load parameters were analyzed on the basis of the results for a dynamic and static stability of a rabbit thoracic aorta. Under normal physiological loads the artery is in a stable configuration. Static instability occurs under high distending pressures and low longitudinal stretch ratios. When the artery is subjected to periodic pressure, an independent increase in the mean pressure, amplitude of the periodic pressure, or frequency, most often, but not always, increases the risk of stability loss. In contrary, an increase in longitudinal stretch ratio most likely, but not certain, stabilizes the vessel. It was shown that adaptive geometrical remodeling due to an increase in mean pressure and flow does not affect artery stability.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2009;131(5):051007-051007-8. doi:10.1115/1.3049518.

Previous attempts by researchers to predict the fatigue behavior of bone cement have been capable of predicting the location of final failure in complex geometries but incapable of predicting cement fatigue life to the right order of magnitude of loading cycles. This has been attributed to a failure to model the internal defects present in bone cement and their associated stress singularities. In this study, dog-bone-shaped specimens of bone cement were micro-computed-tomography (μCT) scanned to generate computational finite element (FE) models before uniaxial tensile fatigue testing. Acoustic emission (AE) monitoring was used to locate damage events in real time during tensile fatigue tests and to facilitate a comparison with the damage predicted in FE simulations of the same tests. By tracking both acoustic emissions and predicted damage back to μCT scans, barium sulfate (BaSO4) agglomerates were found not to be significant in determining fatigue life (p=0.0604) of specimens. Both the experimental and numerical studies showed that diffuse damage occurred throughout the gauge length. A good linear correlation (R2=0.70, p=0.0252) was found between the experimental and the predicted tensile fatigue life. Although the FE models were not always able to predict the correct failure location, damage was predicted in simulations at areas identified as experiencing damage using AE monitoring.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2009;131(5):051008-051008-7. doi:10.1115/1.3116153.

The most frequently used method in a three dimensional human gait analysis involves placing markers on the skin of the analyzed segment. This introduces a significant artifact, which strongly influences the bone position and orientation and joint kinematic estimates. In this study, we tested and evaluated the effect of adding a Kalman filter procedure to the previously reported point cluster technique (PCT) in the estimation of a rigid body motion. We demonstrated the procedures by motion analysis of a compound planar pendulum from indirect opto-electronic measurements of markers attached to an elastic appendage that is restrained to slide along the rigid body long axis. The elastic frequency is close to the pendulum frequency, as in the biomechanical problem, where the soft tissue frequency content is similar to the actual movement of the bones. Comparison of the real pendulum angle to that obtained by several estimation procedures—PCT, Kalman filter followed by PCT, and low pass filter followed by PCT—enables evaluation of the accuracy of the procedures. When comparing the maximal amplitude, no effect was noted by adding the Kalman filter; however, a closer look at the signal revealed that the estimated angle based only on the PCT method was very noisy with fluctuation, while the estimated angle based on the Kalman filter followed by the PCT was a smooth signal. It was also noted that the instantaneous frequencies obtained from the estimated angle based on the PCT method is more dispersed than those obtained from the estimated angle based on Kalman filter followed by the PCT method. Addition of a Kalman filter to the PCT method in the estimation procedure of rigid body motion results in a smoother signal that better represents the real motion, with less signal distortion than when using a digital low pass filter. Furthermore, it can be concluded that adding a Kalman filter to the PCT procedure substantially reduces the dispersion of the maximal and minimal instantaneous frequencies.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2009;131(5):051009-051009-6. doi:10.1115/1.3118762.

Noninvasive methods for monitoring the in vivo loading environment of human bone are needed to determine osteogenic loading patterns that reduce the potential for bone injury. The purpose of this study was to determine whether the vertical ground reaction impact force (impact force) and leg acceleration could be used to estimate internal bone strain at the distal tibia during impact activity. Impact loading was delivered to the heels of human-cadaveric lower extremities. The effects of impact mass and contact velocity on peak bone strain, impact force, leg acceleration, and computed impact force (legaccelerationimpactmass) were investigated. Regression analysis was used to predict bone strain from six different models. Apart from leg acceleration, all variables responded to impact loading similarly. Increasing impact mass resulted in increased bone strain, impact force, and computed impact force, but decreased leg acceleration. The best models for bone strain prediction included impact force and tibial cross-sectional area (R2=0.94), computed impact force and tibial cross-sectional area (R2=0.84), and leg acceleration and tibial cross-sectional area (R2=0.73). Results demonstrate that when attempting to estimate bone strain from external transducers some measure of bone strength must be considered. Although it is not recommended that the prediction equations developed in this study be used to predict bone strain in vivo, the strong relationship between bone strain, impact force, and computed impact force suggested that force platforms and leg accelerometers can be used for a surrogate measure of bone strain.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2009;131(5):051010-051010-6. doi:10.1115/1.3118772.

Edge-to-edge repair (ETER) is a mitral valve repair technique that restores valvular competence by suturing together the free edges of two leaflets. This repair technique alters mitral valve inflow and thus left ventricle hemodynamics during diastole. Our objective was to investigate fluid mechanics immediately downstream of the mitral valve under ETER during diastole. Fresh porcine mitral valves of the annulus size M32 with chordae removed were installed into a steady flow loop simulating a peak diastolic inflow through the mitral valve. Digital particle image velocimetry was used to measure the velocity field immediately downstream of the mitral valve under normal and ETER conditions. First, to study the suture length effect, suture was applied in the central position of the leaflet edge with suture lengths of 3 mm, 6 mm, and 9 mm, respectively. Then, 3 mm suture was set in the central, lateral, and commissural positions of the leaflet edge to study the suture position effect. Flow rate was 15 l/min. Velocity, Reynolds shear stress (RSS), and effective orifice area were assessed. A total of five mitral valves were tested. The normal mitral valve without the ETER had one jet downstream of the valve, but the mitral valve with the central or lateral sutures under the ETER had two jets downstream of the valve with a recirculation region downstream of the suture. The maximum velocity, the maximum RSS in the jets, the pressure drop across the mitral valve, and the jet deflection angle increased with the increase in suture length in the central position. When the suture position effect was investigated with the 3 mm suture, the maximum velocity, the maximum RSS, and the pressure drop across the valve in the central suture position were greater than those of the lateral and the commissural suture positions. The lateral suture demonstrated major and minor jets with the greater maximum velocity and maximum RSS in the major jet. When the suture was in the commissural position, the flow field downstream of the mitral valve was similar to that of the normal mitral valve without the ETER. The effective orifice area was smallest when the suture was applied in the central position as compared with other suture positions. Both suture length and position have an important impact on fluid mechanics downstream of the mitral valve under the ETER in terms of flow pattern, maximum velocity, and RSS distribution. The altered hemodynamics of the mitral valve and thus of the left ventricle by the ETER may change mitral valve and left ventricle function.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2009;131(5):051011-051011-9. doi:10.1115/1.3113682.

The sclera is the white outer shell and principal load-bearing tissue of the eye as it sustains the intraocular pressure. We have hypothesized that the mechanical properties of the posterior sclera play a significant role in and are altered by the development of glaucoma—an ocular disease manifested by structural damage to the optic nerve head. An anisotropic hyperelastic constitutive model is presented to simulate the mechanical behavior of the posterior sclera under acute elevations of intraocular pressure. The constitutive model is derived from fiber-reinforced composite theory, and incorporates stretch-induced stiffening of the reinforcing collagen fibers. Collagen fiber alignment was assumed to be multidirectional at local material points, confined within the plane tangent to the scleral surface, and described by the semicircular von Mises distribution. The introduction of a model parameter, namely, the fiber concentration factor, was used to control collagen fiber alignment along a preferred fiber orientation. To investigate the effects of scleral collagen fiber alignment on the overall behaviors of the posterior sclera and optic nerve head, finite element simulations of an idealized eye were performed. The four output quantities analyzed were the scleral canal expansion, the scleral canal twist, the posterior scleral canal deformation, and the posterior laminar deformation. A circumferential fiber organization in the sclera restrained scleral canal expansion but created posterior laminar deformation, whereas the opposite was observed with a meridional fiber organization. Additionally, the fiber concentration factor acted as an amplifying parameter on the considered outputs. The present model simulation suggests that the posterior sclera has a large impact on the overall behavior of the optic nerve head. It is therefore primordial to provide accurate mechanical properties for this tissue. In a companion paper (Girard, Downs, Bottlang, Burgoyne, and Suh, 2009, “Peripapillary and Posterior Scleral Mechanics—Part II: Experimental and Inverse Finite Element Characterization,” ASME J. Biomech. Eng., 131, p. 051012), we present a method to measure the 3D deformations of monkey posterior sclera and extract mechanical properties based on the proposed constitutive model with an inverse finite element method.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2009;131(5):051012-051012-10. doi:10.1115/1.3113683.

The posterior sclera likely plays an important role in the development of glaucoma, and accurate characterization of its mechanical properties is needed to understand its impact on the more delicate optic nerve head—the primary site of damage in the disease. The posterior scleral shells from both eyes of one rhesus monkey were individually mounted on a custom-built pressurization apparatus. Intraocular pressure was incrementally increased from 5mmHg to 45mmHg, and the 3D displacements were measured using electronic speckle pattern interferometry. Finite element meshes of each posterior scleral shell were reconstructed from data generated by a 3D digitizer arm (shape) and a 20 MHz ultrasound transducer (thickness). An anisotropic hyperelastic constitutive model described in a companion paper (Girard, Downs, Burgoyne, and Suh, 2009, “Peripapillary and Posterior Scleral Mechanics—Part I: Development of an Anisotropic Hyperelastic Constitutive Model,” ASME J. Biomech. Eng., 131, p. 051011), which includes stretch-induced stiffening and multidirectional alignment of the collagen fibers, was applied to each reconstructed mesh. Surface node displacements of each model were fitted to the experimental displacements using an inverse finite element method, which estimated a unique set of 13 model parameters. The predictions of the proposed constitutive model matched the 3D experimental displacements well. In both eyes, the tangent modulus increased dramatically with IOP, which indicates that the sclera is mechanically nonlinear. The sclera adjacent to the optic nerve head, known as the peripapillary sclera, was thickest and exhibited the lowest tangent modulus, which might have contributed to the uniform distribution of the structural stiffness for each entire scleral shell. Posterior scleral deformation following acute IOP elevations appears to be nonlinear and governed by the underlying scleral collagen microstructure as predicted by finite element modeling. The method is currently being used to characterize posterior scleral mechanics in normal (young and old), early, and moderately glaucomatous monkey eyes.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2009;131(5):051013-051013-11. doi:10.1115/1.3118763.

Spine discectomy and fusion is a widely used surgical procedure to correct irreversible degenerative diseases and injuries to the intervertebral disk. The surgical procedure involves the removal of the damage disk material, the decortication of the fusion site, and the placement of the bone graft. Fusion is believed to generate additional stresses in the neighboring disks, which can subsequently lead to new disk degeneration and re-operation. The autologous bone has proven to be the best material for the fusion. However, the autologous bone has three major disadvantages: the high rate of donor site morbidity, the limited and sometimes poor quality of the amounts of bone available, and the extra operative time needed for harvest. For these reasons this study is undertaken to estimate the optimum amount of bone graft needed for a discectomy and correlate it to the change in stress in adjacent levels. A detailed and validated 3D finite element model of the complete human cervical spine (C1-T1) was altered to simulate segmental full and partial discectomies. One full fusion (bone graft occupies about 90% of the vertebral body) and seven partial fusions (bone graft occupies about 10%, 20%, 30%, 40%, 50%, 65%, and 75% of the vertebral body) were simulated at each of the four mid- and lower single levels of the cervical spine and the relationship between the change in stresses in the adjacent levels and the bone graft size (area) was studied. The changes in stress were compared with the previously obtained results of the unfused models. The fused and unfused models were preloaded with a 73.6 N compressive force representing the weight of the head and with a 1.5 Nm physiological moment in flexion, extension, lateral bending, and axial rotation. More than 132 cases were analyzed. The results showed that the necessary amount of bone graft needed for discectomy depends on the cervical disk level to be fused and varies between 30% and 75% of the disk area. The results also suggested that there is a threshold size of the bone graft area, before and/or after which, the long-term effects of the change in stresses in adjacent disks are biomechanically consequential.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2009;131(5):051014-051014-8. doi:10.1115/1.3118769.

Thin film nitinol produced by sputter deposition was used in the design of microstents intended to treat small vessel aneurysms. Thin film microstents were fabricated by “hot-target” dc sputter deposition. Both stress-strain curves and differential scanning calorimetry curves were generated for the film used to fabricate stents. The films used for stents had an Af temperature of approximately 36°C allowing for body activated response from a microcatheter. The 10μm film was only slightly radio-opaque; thus, a Td marker was attached to the stents to guide fluoroscopic delivery. Thin film microstents were tested in a flow loop with and without nitinol support skeletons to give additional radial support. Stents could be compressed into and easily delivered with <3 Fr catheters. Theoretical frictional and wall drag forces on a thin film nitinol small vessel vascular stent were calculated, and the radial force exerted by thin film stents was evaluated theoretically and experimentally. In vivo studies in swine confirmed that thin film nitinol microstents could be deployed accurately and consistently in the swine cranial vasculature.

Commentary by Dr. Valentin Fuster

Technical Briefs

J Biomech Eng. 2009;131(5):054501-054501-5. doi:10.1115/1.3078172.

A large number of parameters such as material properties, geometry, and structural strength are involved in the design and analysis of cemented hip implants. Uncertainties in these parameters have a potential to compromise the structural performance and lifetime of implants. Statistical analyses are well suited to investigating this type of problem as they can estimate the influence of these uncertainties on the incidence of failure. Recent investigations have focused on the effect of uncertainty in cement properties and loading condition on the integrity of the construct. The present study hypothesizes that geometrical uncertainties will play a role in cement mantle failure. Finite element input parameters were simulated as random variables and different modes of failure were investigated using a response surface method (RSM). The magnitude of random von Mises stresses varied up to 8 MPa, compared with a maximum nominal value of 2.38 MPa. Results obtained using RSM are shown to match well with a benchmark direct Monte Carlo simulation method. The resulting probability that the maximum cement stress will exceed the nominal stress is 62%. The load and the bone and prosthesis geometries were found to be the parameters most likely to influence the magnitude of the cement stresses and therefore to contribute most to the probability of failure.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2009;131(5):054502-054502-6. doi:10.1115/1.3078182.

Diffuse brain injury (DBI) commonly results from blunt impact followed by sudden head rotation, wherein severity is a function of rotational kinematics. A noninvasive in vivo rat model was designed to further investigate this relationship. Due to brain mass differences between rats and humans, rotational acceleration magnitude indicative of rat DBI (350krad/s2) has been estimated as approximately 60 times greater than that of human DBI (6krad/s2). Prior experimental testing attempted to use standard transducers such as linear accelerometers to measure loading kinematics. However, such measurement techniques were intrusive to experimental model operation. Therefore, initial studies using this experimental model obtained rotational displacement data from videographic images and implemented a finite difference differentiation (FDD) method to obtain rotational velocity and acceleration. Unfortunately, this method amplified high-frequency, low-amplitude noise, which interfered with signal magnitude representation. Therefore, a coherent average technique was implemented to improve the measurement of rotational kinematics from videographic images, and its results were compared with those of the previous FDD method. Results demonstrated that the coherent method accurately determined a low-pass filter cutoff frequency specific to pulse characteristics. Furthermore, noise interference and signal attenuation were minimized compared with the FDD technique.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2009;131(5):054503-054503-9. doi:10.1115/1.3078163.

A previously developed laser spallation technique to determine the tensile strength of thin film interfaces was successfully adopted to study the effect of microsurface roughness of titanium disks on the adhesion strength of mineralized bone tissue. The study demonstrated that mineralized tissue has about 25% higher interfacial strength when it is cultured on the acid-etched titanium surface than on its machined counterpart. Specifically, interfacial tensile strength of 179±4.4MPa and 224±2.6MPa were measured when the mineralized tissue was processed on the machined titanium and acid-etched titanium surfaces, respectively. Since in the laser spallation experiment, the mineralized tissue is pulled normal to the interface, this increase is attributed to the stronger interfacial bonding on account of higher surface energy associated with the acid-etched surface. This enhanced local chemical bonding further enhances the roughness-related mechanical interlocking effect. These two effects at very different length scales—atomic (enhanced bonding) versus continuum (roughness-related interlocking)—act synergistically and explain the widely observed clinical success of roughened dental implants.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2009;131(5):054504-054504-4. doi:10.1115/1.3116150.

Three-dimensional fully unsteady computational fluid dynamic simulations of five Olympic-level swimmers performing the underwater dolphin kick are used to estimate the swimmer’s propulsive efficiencies. These estimates are compared with those of a cetacean performing the dolphin kick. The geometries of the swimmers and the cetacean are based on laser and CT scans, respectively, and the stroke kinematics is based on underwater video footage. The simulations indicate that the propulsive efficiency for human swimmers varies over a relatively wide range from about 11% to 29%. The efficiency of the cetacean is found to be about 56%, which is significantly higher than the human swimmers. The computed efficiency is found not to correlate with either the slender body theory or with the Strouhal number.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 2009;131(5):054505-054505-5. doi:10.1115/1.3116152.

The intervertebral disk (IVD), characterized as a charged, hydrated soft tissue, is the largest avascular structure in the body. Mechanical loading to the disk results in electromechanical transduction phenomenon as well as altered transport properties. Electrical conductivity is a material property of tissue depending on ion concentrations and diffusivities, which are in turn functions of tissue composition and structure. The aim of this study was to investigate the effect of mechanical loading on electrical behavior in human IVD tissues. We hypothesized that electrical conductivity in human IVD is strain-dependent, due to change in tissue composition caused by compression, and inhomogeneous, due to tissue structure and composition. We also hypothesized that conductivity in human annulus fibrosus (AF) is anisotropic, due to the layered structure of the tissue. Three lumbar IVDs were harvested from three human spines. From each disk, four AF specimens were prepared in each of the three principal directions (axial, circumferential, and radial), and four axial nucleus pulposus (NP) specimens were prepared. Conductivity was determined using a four-wire sense-current method and a custom-designed apparatus by measuring the resistance across the sample. Resistance measurements were taken at three levels of compression (0%, 10%, and 20%). Scanning electron microscopy (SEM) images of the human AF tissue were obtained in order to correlate tissue structure with conductivity results. Increasing compressive strain significantly decreased conductivity for all groups (p<0.05, analysis of variance (ANOVA)). Additionally, specimen orientation significantly affected electrical conductivity in the AF tissue, with conductivity in the radial direction being significantly lower than that in the axial or circumferential directions at all levels of compressive strain (p<0.05, ANOVA). Finally, conductivity in the NP tissue was significantly higher than that in the AF tissue (p<0.05, ANOVA). SEM images of the AF tissues showed evidence of microtubes orientated in the axial and circumferential directions, but not in the radial direction. This may suggest a relationship between tissue morphology and the anisotropic behavior of conductivity in the AF. The results of this investigation demonstrate that electrical conductivity in human IVD is strain-dependent and inhomogeneous, and that conductivity in the human AF tissue is anisotropic (i.e., direction-dependent). This anisotropic behavior is correlated with tissue structure shown in SEM images. This study provides important information regarding the effects of mechanical loading on solute transport and electrical behavior in IVD tissues.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In