0

IN THIS ISSUE


RESEARCH PAPERS

J Biomech Eng. 1987;109(3):181-191. doi:10.1115/1.3138668.

A simple mathematical model capable of simulating the major biomechanical attributes of contracting cardiac muscle is presented. This model is based on the phenomenological observations on heart muscle. The form of the equation can be readily extended to describe the pressure-volume-time-velocity of the intact heart as well, thus allowing a direct bridge between the dynamics of papillary muscle and the dynamics of intact heart. Parameters that are sensitive to inotropic state of the muscle can be obtained directly from the isometric tension-time record of the muscle or the isovolumic pressure-time record of the ventricle. These parameters have the potential to serve as quantitative measures of cardiac health.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(3):192-199. doi:10.1115/1.3138669.

Estimating forces in muscles and joints during locomotion requires formulations consistent with available methods of solving the indeterminate problem. Direct comparisons of results between differing optimization methods proposed in the literature have been difficult owing to widely varying model formulations, algorithms, input data, and other factors. We present an application of a new optimization program which includes linear and nonlinear techniques allowing a variety of cost functions and greater flexibility in problem formulation. Unified solution methods such as the one demonstrated here, offer direct evaluations of such factors as optimization criteria and constraints. This unified method demonstrates that nonlinear formulations (of the sort reported) allow more synergistic activity and in contrast to linear formulations, allow antagonistic activity. Concurrence of EMG activity and predicted forces is better with nonlinear predictions than linear predictions. The prediction of synergistic and antagonistic activity expectedly leads to higher joint force predictions. Relaxation of the requirement that muscles resolve the entire intersegmental moment maintains muscle synergism in the nonlinear formulation while relieving muscle antagonism and reducing the predicted joint contact force. Such unified methods allow more possibilities for exploring new optimization formulations, and in comparing the solutions to previously reported formulations.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(3):200-209. doi:10.1115/1.3138670.

Torsion as a cause of failure in the lumbar intervertebral joint was studied using a three-dimensional nonlinear finite element model. The role of facets and ligaments as well as the stress distributions in the posterior elements, the disk, the ligaments, and the vertebral body were examined. For physiological range of torsion, the facets carried 10 to 40 percent of the torque. The fiber stresses in the disk were the highest at the lateral margin of the outer layer of the annulus. Therefore, torsion itself is unlikely to cause posterior or posterolateral disk prolapse.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(3):210-217. doi:10.1115/1.3138671.

A computer-automated approach for studying the human body vibration is presented. This includes vertical, horizontal, and torsional vibration. The procedure used is based on Finite Segment Modeling (FSM) of the human body, thus treating it as a mechanical structure. Kane’s equations as developed by Huston et al. are used to formulate the governing equations of motion. The connective tissues are modeled by springs and dampers. In addition, the paper presents the transient response of different parts of the body due to a sinusoidal forcing function as well as an impulse function applied to the lower torso in the vertical direction.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(3):218-225. doi:10.1115/1.3138672.

The object of this study was to devise a unified method for comparing different thermal techniques for the estimation of blood perfusion rates and to perform a comparison for several common techniques. The approach used was to develop analytical models for the temperature response for all combinations of five power deposition geometries (spherical, one- and two-dimensional cylindrical, and one- and two-dimensional Gaussian) and three transient heating techniques (temperature pulse-decay, temperature step function, and constant-power heat-up) plus one steady-state heating technique. The transient models were used to determine the range of times (the time window) when a significant portion of the transient temperature response was due to blood perfusion. This time window was defined to begin when the difference between the conduction-only and the conduction-plus-blood flow transient temperature (or power) responses exceeded a specified value, and to end when the conduction-plus-blood flow transient temperature (or power) reached a specified fraction of its steady-state value. The results are summarized in dimensionless plots showing the size of the time windows for each of the transient perfusion estimation techniques. Several conclusions were drawn, in particular: (a) low perfusions are difficult to estimate because of the dominance of conduction, (b) large heated regions are better suited for estimation of low perfusions, (c) noninvasive heating techniques are superior because they have the potential to minimize conduction effects, and (d) none of the transient techniques appears to be clearly superior to the others.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(3):226-233. doi:10.1115/1.3138673.
Abstract
Topics: Equations
Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(3):234-237. doi:10.1115/1.3138674.
Abstract
Topics: Equations
Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(3):238-246. doi:10.1115/1.3138675.

Stump stresses were correlated to prosthesis loads for two unilateral, below-knee amputees over a range of flexion-extension angular adjustments. Normal stresses on the patellar tendon and gastrocnemius were related to the axial force and flexion-extension moment of the prosthesis via a matrix equation. Elements of this matrix, influence factors calculated by least-squares algorithms, identified the contributions of each time-dependent load component acting to produce the time-dependent normal stresses. The flexion-extension angular sensitivity of the way these sagittal plane loads combined to produce normal stresses was included in the matrix equation via a first-order Maclaurin series. Highly favorable correlation coefficients between empirically measured and theoretically predicted stump stresses were calculated. This demonstrated that, in future studies, using an influence-factor matrix holds promise for quantifying sensitivities of normal stresses of the stump to multiple adjustments in prostheses.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(3):247-251. doi:10.1115/1.3138676.

The design of a simple dynamic knee simulator is described. In the simulator the joint dynamics are reproduced in-vitro in a knee specimen by controlling the time-histories of the tensions in two flexible cables acting as lumped muscle group equivalents, without constraining the natural conjunct and passive motions of the specimen. The two cable tensions acting individually are used to control the active flexion/extension motion, while their simultaneous action is used to control joint compressive force. The characteristics of the electrohydraulic servo system acting under real-time microprocessor control are described. The system performance during simulation of an idealized level-walking function is evaluated.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(3):252-256. doi:10.1115/1.3138677.

Strain energy functions are derived from biphasic soft tissue models in order to describe large-deformation, large-swelling, elastic behavior of nonlinear materials. The resulting analysis leads to calculations of stress-extension relations and tissue fluid pressure. Also explored are the elastic stability of the biphasic tissue models and the manner in which tissue pressure is altered by material deformation.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(3):257-262. doi:10.1115/1.3138678.

A series of multicompartmental, biphasic elastic tissue models is developed. In its most general form, the models consist of multiple tubular networks, each with an internal spring network. In addition, another spring network occupies the extratubular compartment. Strain energy functions are derived for the models, as well as expressions for the fluid pressures in each compartment arising from volume expansion or swelling. Calculations also show that the distribution of fluid among compartments is a significant determinant of tissue elasticity.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(3):263-271. doi:10.1115/1.3138679.

The cutting process of orthopaedic bone saws was considered as orthogonal (two-dimensional) cutting for determination of the horizontal and vertical force components of single edge cutting tools with rake angles of 0 to −30 degrees. The Merchant analysis for orthogonal cutting was used to determine the resultant force and other force and work relationships. The effect of an imposed lateral vibration on the cutting tool was also investigated. The results of the tests indicated a strong interaction between the measured and derived forces with the rake angle and feed velocity. It was concluded that to reduce the cutting forces and work expenditure, a negative rake angle between 0 and −10 degrees, high feed velocity, and an imposed lateral vibration provided the greatest reduction in force and energy expenditure.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(3):272-278. doi:10.1115/1.3138680.

A new compact centrifugal blood pump driven by a miniature DC servomotor has been designed for use for short-term extra corporeal and cardiac-assisted circulation. The impeller of the pump was connected directly to the motor by using a simple-gear coupling. The shaft for the impeller was sealed from blood by both a V-ring and a seal bearing. Either pulsatile or nonpusatile flow was produced by controlling the current supply to the motor. The pump characteristics and the degree of hemolysis were evaluated with regard to the configuration of the impeller with a 38-mm outer diameter in vitro tests; the impeller having the blade angles at the inlet of 20 deg and at the outlet of 50 deg was the most appropriate as a blood pump. The performance in an operation, hemolysis and thrombus formation in the pump were assessed by a left ventricular bypass experiment in dogs. It was suggested by this study that this prototype pump appears promising for use not only in animal experiments but also in clinical application.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In