0

IN THIS ISSUE


RESEARCH PAPERS

J Biomech Eng. 1987;109(1):1-9. doi:10.1115/1.3138636.

A simple, continuous, one-dimensional model for the geometry and structure of the bronchial airways is used for the analysis of fluid flow patterns which have been observed in forced expiration maneuvers. Various phenomena within the conducting system associated with flow limitation are investigated: (a) the conditions in which a “choke” (flow limitation) can occur in a compliant system; (b) theoretical flows that are physically impossible; (c) the possibility of having elastic jumps downstream of the choke point; (d) perturbations in the physical parameters of the conducting system.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(1):10-17. doi:10.1115/1.3138634.

This study presents a computational approach for the deformation analyses of problems in cell and developmental biology. Cells and embryos are viewed mechanically as axisymmetric shell-like bodies containing a body of incompressible material. The analysis approach is based on the finite element method. It is comprised of three finite element ingredients: (1) an axisymmetric shell/membrane element valid for modeling finite bending, shearing and stretching; (2) a volume constraint algorithm for modeling the membrane-bound incompressible material; and (3) a contact algorithm for modeling the mechanical interactions between deformable bodies. Part II of this study will demonstrate how these three ingredients can be applied to analyze mechanical experiments on cells. This same method is also useful for simulating embryonic shape changes during development.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(1):18-24. doi:10.1115/1.3138635.

This study employs the finite element approach developed in Part I to analyze mechanical experiments on cells. It views cells as axisymmetric membrane structures containing a body of incompressible material, and models the mechanical contact between a cell and the loading apparatus by a contact algorithm. Since the method is valid for analyzing axisymmetric shell-like bodies with arbitrary shapes, it treates various mechanical experiments on cells in a unified manner. For demonstration purposes, three commonly used mechanical experiments on cells are considered; (1) the compression experiment; (2) the suction (micropipette aspiration) experiment; and (3) the magnetic particle experiment. Based on an estimate of the mechanical property data for unfertilized sea urchin eggs, this analysis method predicts the responses for all three experiments using the same assumptions and approximations. This parallel treatment gives a broad basis for data correlation with experiments. The method also provides insights into mechanical experiments not offered by other approximate methods. For example, it gives the distributions of tensions and stretches on the cell cortex, and suggests the role of friction in the suction experiment.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(1):25-26. doi:10.1115/1.3138637.

A variety of shear rate measures have been calculated from hemodynamic data obtained by laser Doppler anemometry in flow-through casts of human aortic bifurcations. Included are measures sensitive to the mean and amplitude of the shear rate, its maximum rate of change, the duration of stasis and flow reversal near the wall, and the unidirectionality of the flow. Many of these measures are highly correlated with one another. This suggests that that it will be difficult to identify from in vivo measurements those aspects of the flow field to which the vessel wall is most sensitive. It may be possible to separate the effects of purely temporal factors (e.g., the duration of flow reversal) from those related to wall shear stress.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(1):27-34. doi:10.1115/1.3138638.

The mechanical properties of endothelial cells were measured using the micropipette technique. The cells employed were collected from bovine aortic endothelium and cultured in our laboratory. Endothelial cells from confluent monolayers under noflow conditions were detached from their substrate by trypsin or by a mechanical method and suspended in modified Dulbecco medium (MDM). In the micropipette technique, a part of the cell is aspirated into the tip of the micropipette under a microscope, and the deformation measured from a photograph. In this study, the data obtained were analyzed using a model where the cytoskeletal elements, which are considered to be the primary stress bearing components, are assumed to reside in a submembranous, cortical layer. Detached cells were found to have almost homogeneous mechanical properties based on measurements from different regions of the surface of a single cell. However, a hysteresis loop was observed in the relation between pressure and cell deformation during the loading and unloading processes. The calculated elastic shear moduli obtained for the trypsin-detached cells were as much as 10–20 times larger than those of a red blood cell. Mechanically-detached cells had moduli approximately twice that of the trypsin detached cells. Passage time, i.e., cell culture age, had no influence on the mechanical properties of the trypsin-detached cells, but did have an effect on the mechanically-detached cells, with both the younger and older cells being somewhat stiffer.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(1):35-42. doi:10.1115/1.3138639.

Mechanical studies of the Functional Spinal Unit (FSU) in-vitro have shown that the slopes of the load-displacement curves increase with load. This nonlinearity implies that the stiffness of the FSU is not constant over the range of physiologic loads, and that measurements obtained for FSU specimens through the application of individual loads cannot be summed to predict the response of the specimens to combined loads. Both experimental and analytical methods were developed in the present study to better quantify the nonlinear FSU load-displacement response and to calculate the coupled stiffness of FSU specimens at combined states of load reflecting in-vivo conditions. Results referenced to the center of the vertebral body indicate that lumbar FSU specimens are stiffer in flexion than in extension, and that FSU specimens loaded in flexion are stiffer at high loads than at low loads. The importance of combined load testing and a nonlinear interpretation of load-displacement data is demonstrated.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(1):43-47. doi:10.1115/1.3138640.

This paper discusses results of a computer simulation for designing a new pulse duplicator system for mechanical heart valves. The design objective of the system is to obtain a compact, efficient pulse duplicator system capable of accurately measuring the volume flow rate across a valve. The volume flow rate is determined as the derivative of the volume displacement of an actuator piston which directly drives the fluid. The system does not need any circulatory loop, since the piston is controlled on-line to follow command signals representing an aortic impedance. The results of the computer simulation show: (1) the designed PI-controllers of the actuator can precisely control valve motion to follow given command signals, (2) the eigenvalues of the controllers have to be carefully chosen to prevent unstable behaviors of a valve in diastole, and (3) the dimensions of the actuator is optimized by minimizing a cost function of the total efficiency of the system.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(1):48-54. doi:10.1115/1.3138641.

The effects of external pressure on the relative terminal lymphatic flow rate following occlusion of the lumph system were studied. Sulfur colloid tagged with 99m Tc was injected into the hind thigh of dogs prior to compressive loading. Initially, the lymphatic clearance of the tracer was measured for approximately forty minutes with no applied external pressure. The terminal lymph vessels were then occluded for thirty minutes with the application of an applied external pressure of 75 mm Hg. Finally, the lymphatic clearance following occlusion was measured with the application of a nonocclusive pressure. External pressures of 0, 30, and 45 mm Hg were tested to determine the effects of post-occlusive pressure application on terminal lymphatic clearance. Results indicated that terminal lymphatic clearance did not resume for an applied pressure of 45 mm Hg following occlusion. The relative lymphatic clearance rate at an external pressure of 30 mm Hg following occlusion was 54% of the clearance rate for a 0 mm Hg applied pressure prior to lymph occlusion. The results for a 0 mm Hg external pressure following occlusion indicated a 23 percent clearance rate compared to the pre-occlusive state. A two compartment model was utilized to determine the lymphatic clearance rate per unit tissue volume of subcutaneous tissue from the experimental data for each pressure phase.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(1):55-59. doi:10.1115/1.3138642.

Loosening of orthopedic implants is believed to be caused, in part, by fracture at the bone-cement interface. This loosening occurs even in regions where the interfacial load is primarily compressive. A model is developed whereby cracks can radiate from an elliptical fluid filled void. The incompressible fluid is allowed to penetrate into the cracks when the system is loaded compressively. The mode I stress intensity factor is calculated to test the feasibility of crack growth, and a numerical scheme which uses piecewise quadratic polynomials is used to solve the resulting singular integral equations. The results show the combinations of parameters for which cracks are likely to grow.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(1):60-64. doi:10.1115/1.3138643.

The frequency response of surface-mounted electrochemical mass transfer probes used to deduce wall shear rates has been investigated experimentally for the case of fully developed laminar pulsatile flow in a straight tube. Generally good agreement is found with the asymptotic results obtained by Lighthill’s methods. The significance of the results with regard to the investigation of models of pulsatile flows of physiological interest is discussed. It is concluded that the frequency-dependent phase and amplitude corrections required to obtain accurate wall shear measurements are of such magnitudes as to render impractical the use of electrochemical probes to determine wall shear rates in these flows.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(1):65-67. doi:10.1115/1.3138644.
Abstract
Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(1):68-71. doi:10.1115/1.3138645.

The temperature dependent tensile behavior of ligament was investigated from 2°C to 37°C. Nondestructive cyclic tests were performed on ten canine femur-medial collateral ligament-tibia (FMT) complexes at sequential temperatures of 22°C, 22°C, 27°C, 32°C, 37°C, and again at 22°C. The samples were rested at zero load between tests for sufficient time periods to allow for full recovery from the ligament’s time and history dependent viscoelastic properties. Ten additional FMT complexes were sequentially tested in a similar fashion, but at temperatures of 22°C, 22°C, 2°C, 6°C, 14°C, and 22°C. All canine FMT complexes showed temperature dependent viscoelastic properties: the measured area of hysteresis decreased with increasing temperature; the cyclic load relaxation behavior plateaued to a higher value at lower temperatures; and the tensile load at a predetermined ligament substance strain level had an inversely proportional relationship with respect to temperature.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(1):72-78. doi:10.1115/1.3138646.

In this paper the new bioheat equation derived in Weinbaum and Jiji [7] is applied to the three layer conceptual model of microvascular surface tissue organization proposed in [1]. A simplified one-dimensional quantitative model of peripheral tissue energy exchange is then developed for application in limb and whole body heat transfer studies. A representative vasculature is constructed for each layer and the enhancement in the local tensor conductivity of the tissue as a function of vascular geometry and blood flow is examined. Numerical solutions for the boundary value problem coupling the three layers are presented and these results used to study the thermal behavior of peripheral tissue for a wide variety of physiological conditions from supine resting state to maximum exercise.

Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(1):79-89. doi:10.1115/1.3138647.

An electromechanical model for charged, hydrated tissues is developed to predict the kinetics of changes in swelling and isometric compressive stress induced by changes in bath salt concentration. The model focuses on ionic transport as the rate limiting step in chemically modulating electrical interactions between the charged macromolecules of the extracellular matrix. The swelling response to such changes in local interaction forces is determined by the relative rates of chemical diffusion and fluid redistribution in the tissue sample. We have tested the model by comparing the experimentally observed salt-induced stress relaxation response in bovine articular cartilage and corneal stroma to the response predicted by the model using constitutive relations for the concentration dependent material properties of the tissues reported in a related study. The qualitatively good agreement between our experimental measurements and the predictions of the model supports the physical basis of the model and demonstrates the model’s ability to discriminate between the two soft connective tissues that were examined.

Commentary by Dr. Valentin Fuster
Commentary by Dr. Valentin Fuster
J Biomech Eng. 1987;109(1):94-101. doi:10.1115/1.3138649.

A flow visualization study using selective dye injection and frame by frame analysis of a movie provided qualitative and quantitative data on the motion of marked fluid particles in a 60 degree artery branch model for simulation of physiological femoral artery flow. Physical flow features observed included jetting of the branch flow into the main lumen during the brief reverse flow period, flow separation along the main lumen wall during the near zero flow phase of diastole when the core flow was in the downstream direction, and inference of flow separation conditions along the wall opposite the branch later in systole at higher branch flow ratios. There were many similarities between dye particle motions in pulsatile flow and the comparative steady flow observations.

Commentary by Dr. Valentin Fuster

Sorry! You do not have access to this content. For assistance or to subscribe, please contact us:

  • TELEPHONE: 1-800-843-2763 (Toll-free in the USA)
  • EMAIL: asmedigitalcollection@asme.org
Sign In