Abstract

In this study, a conjugate laminar Graetz problem in a channel with wall conduction is theoretically studied. The heat exchanger under consideration utilizes a hot fluid stream with embedded heat sources in the internal side of the channel and a boiling liquid at the external side. Because of the nonlinear and nonmonotonic boiling curve, a complex and interesting solution structure exists. When the wall conduction is accounted for the problem admits multiple solutions. For a certain range of the conduction–convection parameter and the heat generation intensity up to five solutions have been determined featuring stable single and multimode temperature profiles. The conduction–convection parameter and the heat generation intensity have a profound effect on the solution structure and the stability since multimode solutions are becoming unstable allowing only the single mode profiles to be stable. An important finding is that when the boiling heat flux is directly imposed as a boundary condition, neglecting wall conduction, it is not possible to capture the multiplicity since a unique temperature profile is predicted. The model developed is applicable to typical heat exchangers with phase change in general and to cryogenic applications in particular where there is a significant temperature difference between the boiling point of the cryogenic liquid and the inlet temperature of the hot fluid in the exchanger.

References

1.
Cole
,
K. D.
, and
Çetin
,
B.
,
2017
, “
Modeling of Joule Heating and Convective Cooling in a Thick-Walled Micro-Tube
,”
Int. J. Therm. Sci.
,
119
, pp.
24
36
.10.1016/j.ijthermalsci.2017.05.010
2.
Cotta
,
R. M.
,
Naveira-Cotta
,
C. P.
, and
Knupp
,
D.
,
2013
, “
Conjugated Convection-Conduction Analysis in Microchannels With Axial Diffusion Effects and a Single Domain Formulation
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
135
(
9
), p.
091008
.10.1115/1.4024425
3.
Borah
,
A.
,
Pati
,
S.
, and
Baranyi
,
S.
,
2021
, “
Conjugate Heat Transfer Analysis for Forced Convective Flow Through a Parallel Plate Microchannel: Effect of Nonuniform Asymmetric Heating
,”
Numer. Heat Transfer, Part A
,
80
(
5
), pp.
210
233
.10.1080/10407782.2021.1939633
4.
Sánchez
,
S.
,
Ascanio
,
G.
,
Sánchez-Minero
,
F.
,
Méndez
,
F.
,
Aguayo
,
J. P.
,
Ramírez-Jiménez
,
E.
, and
Alonso-Ramírez
,
G.
,
2019
, “
Conjugate Thermal-Hydrodynamic Model for the Study of Heavy Oil Transport
,”
J. Pet. Sci. Eng.
,
179
, pp.
997
1011
.10.1016/j.petrol.2019.04.083
5.
Gururajan
,
V.
, and
Som
,
S.
,
2022
, “
Numerical Solutions to the Reactive Graetz Problem for CO2 Capture
,”
Carbon Capture Sci. Technol.
,
5
, p.
100071
.10.1016/j.ccst.2022.100071
6.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts
,
Academic Press
,
New York
.
7.
Papoutsakis
,
E.
, and
Ramkrishna
,
D.
,
1981
, “
Conjugated Graetz Problems–I: General formalism and a class of solid-fluid problems
,”
Chem. Eng. Sci.
,
36
(
8
), pp.
1381
1391
.10.1016/0009-2509(81)80172-8
8.
Campo
,
A.
, and
Schuler
,
C.
,
1988
, “
Heat Transfer in Laminar Flow Through Circular Tubes Accounting for Two-Dimensional Wall Conduction
,”
Int. J. Heat Mass Transfer
,
31
(
11
), pp.
2251
2259
.10.1016/0017-9310(88)90157-3
9.
Guedes
,
R. O. C.
, and
Özişik
,
M. N.
,
1992
, “
Conjugated Turbulent Heat Transfer With Axial Conduction in Wall and Convection Boundary Conditions in a Parallel-Plate Channel
,”
Int. J. Heat Fluid Flow
,
13
(
4
), pp.
322
328
.10.1016/0142-727X(92)90002-Q
10.
Weigand
,
B.
, and
Gassner
,
G.
,
2007
, “
The Effect of Wall Conduction for the Extended Graetz Problem for Laminar and Turbulent Channel Flows
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
1097
1105
.10.1016/j.ijheatmasstransfer.2006.06.047
11.
Adelaja
,
A. O.
,
Dirker
,
J.
, and
Meyer
,
J. P.
,
2014
, “
Effects of the Thick Walled Pipes With Convective Boundaries on Laminar Flow Heat Transfer
,”
Appl. Energy
,
130
, pp.
838
845
.10.1016/j.apenergy.2014.01.072
12.
Quintero
,
A. E.
, and
Vera
,
M.
,
2017
, “
Laminar Counterflow Parallel-Plate Heat Exchangers: An Exact Solution Including Axial and Transverse Wall Conduction Effects
,”
Int. J. Heat Mass Transfer
,
104
, pp.
1229
1245
.10.1016/j.ijheatmasstransfer.2016.09.025
13.
Pigeonneau
,
F.
,
Jaffrennou
,
B.
,
Letailleur
,
A.
, and
Limouzin
,
K.
,
2016
, “
Numerical Investigation of Generalized Graetz Problem in Circular Tube With a Mass Transfer Coupling Between the Solid and the Liquid
,”
Int. J. Heat Mass Transfer
,
96
, pp.
381
395
.10.1016/j.ijheatmasstransfer.2016.01.040
14.
Bhowmick
,
D.
, and
Randive
,
P. R.
,
2023
, “
Effect of Non-Uniform Heating on Conjugate Heat Transfer and Entropy Generation Characteristics Within a Partially Filled Porous Corrugated Channel
,”
Numer. Heat Transfer, Part A
, pp.
1
23
.10.1080/10407782.2023.2257387
15.
Yu
,
B.
, and
Churchill
,
S. W.
,
2012
, “
Prediction of the Influence of Energetic Chemical Reactions on Forced Convective Heat Transfer
,”
Adv. Heat Transfer
,
44
, pp.
1
117
.10.1016/B978-0-12-396529-5.00001-9
16.
Higuera
,
F. J.
, and
Fernández de la Mora
,
J.
,
2023
, “
The Reactive Graetz Problem for a First Order Homogeneous Decomposition Reaction, and the Limit of Moderately Large Reaction Constants
,”
Phys. Fluids
,
35
(
9
), p.
093616
.10.1063/5.0168890
17.
Veeraragavan
,
A.
, and
Cadou
,
C.
,
2010
, “
Theoretical Study of Conjugate Heat Transfer Effects on Temperature Profiles in Parallel Flow With Embedded Heat Sources
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1699
1711
.10.1016/j.ijheatmasstransfer.2010.01.019
18.
Cavazzuti
,
M.
,
2020
, “
Viscous Heating Effects on Heat Transfer Characteristics of Laminar Compressible Channel Flow
,”
Int. J. Heat Mass Transfer
,
153
, p.
119608
.10.1016/j.ijheatmasstransfer.2020.119608
19.
Di Marcello
,
V.
,
Cammi
,
A.
, and
Luzzi
,
L.
,
2010
, “
A Generalized Approach to Heat Transfer in Pipe Flow With Internal Heat Generation
,”
Chem. Eng. Sci.
,
65
(
3
), pp.
1301
1310
.10.1016/j.ces.2009.10.004
20.
Nukiyama
,
S.
,
1966
, “
Maximum and Minimum Value of Heat Transmitted From a Metal to Boiling Water Under Atmospheric Pressure
,”
Int. J. Heat Mass Transfer
,
9
, pp.
1419
1434
.10.1016/0017-9310(66)90138-4
21.
Westwater
,
J. W.
,
1988
, “
Boiling Heat Transfer
,”
Int. Commun. Heat Mass Transfer
,
15
(
4
), pp.
381
400
.10.1016/0735-1933(88)90040-1
22.
Dhir
,
V. K.
,
1998
, “
Boiling Heat Transfer
,”
Annu. Rev. Fluid Mech.
,
30
(
1
), pp.
365
401
.10.1146/annurev.fluid.30.1.365
23.
Lüttich
,
T.
,
Marquardt
,
W.
,
Buchholz
,
M.
, and
Auracher
,
H.
,
2004
, “
Towards a Unifying Heat Transfer Correlation for the Entire Boiling Curve
,”
Int. J. Therm. Sci.
,
43
(
12
), pp.
1125
1139
.10.1016/j.ijthermalsci.2004.04.014
24.
Haley
,
K. W.
, and
Westwater
,
J. W.
,
1965
, “
Heat Transfer From a Fin to a Boiling Liquid
,”
Chem. Eng. Sci.
,
20
(
7
), pp.
711
712
.10.1016/0009-2509(65)80010-0
25.
Klein
,
G. J.
, and
Westwater
,
J. W.
,
1971
, “
Heat Transfer From Multiple Spines to Boiling Liquids
,”
AIChE J.
,
17
(
5
), pp.
1050
1056
.10.1002/aic.690170507
26.
Zhukov
,
S. A.
,
Barelko
,
V. V.
, and
Merzhanov
,
A. G.
,
1981
, “
Wave Processes on Heat Generating Surfaces in Pool Boiling
,”
Int. J. Heat Mass Transfer
,
24
(
1
), pp.
47
55
.10.1016/0017-9310(81)90092-2
27.
Petukhov
,
B. S.
,
Kovalev
,
S. A.
,
Zhukov
,
V. M.
, and
Kazakov
,
G. M.
,
1971
, “
Measurement of Local Heat Transfer on a Nonisothermal Surface
,”
High Temp.
,
9
, pp.
1159
1161
.
28.
Krikkis
,
R. N.
,
Sotirchos
,
S. V.
, and
Razelos
,
P.
,
2004
, “
Analysis of Multiplicity Phenomena in Longitudinal Fins Under Multi-Boiling Conditions
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
126
(
1
), pp.
1
7
.10.1115/1.1643088
29.
Lee
,
D. J.
, and
Lu
,
S. M.
,
1992
, “
Two-Mode Boiling on a Horizontal Boiling Wire
,”
AIChE J.
,
38
(
7
), pp.
1115
1127
.10.1002/aic.690380714
30.
Liaw
,
S. P.
, and
Yeh
,
R. H.
,
1994
, “
Fins With Temperature Dependent Surface Heat Flux-II. Multi-Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
37
(
10
), pp.
1517
1524
.10.1016/0017-9310(94)90153-8
31.
Krikkis
,
R. N.
,
2015
, “
On the Multiple Solutions of Boiling Fins With Heat Generation
,”
Int. J. Heat Mass Transfer
,
80
, pp.
236
242
.10.1016/j.ijheatmasstransfer.2014.09.020
32.
Krikkis
,
R. N.
,
2021
, “
On the Thermal Dynamics of Metallic and Superconducting Wires. Bifurcations, Quench, the Destruction of Bistability and Temperature Blowup
,”
J.
,
4
(
4
), pp.
803
823
.10.3390/j4040055
33.
Krikkis
,
R. N.
,
2018
, “
A Thermodynamic and Heat Transfer Model for LNG Ageing During Ship Transportation. Towards an Efficient Boil-Off Gas Management
,”
Cryogenics
,
92
, pp.
76
83
.10.1016/j.cryogenics.2018.04.007
34.
Al Ghafri
,
S. Z. S.
,
Perez
,
F.
,
Heum Park
,
K.
,
Gallagher
,
L.
,
Warr
,
L.
,
Stroda
,
A.
,
Siahvashi
,
A.
,
Ryu
,
Y.
,
Kim
,
S.
,
Kim
,
S. G.
,
Seo
,
Y.
,
Johns
,
M. L.
, and
May
,
E. F.
,
2021
, “
Advanced Boil-Off Gas Studies for Liquefied Natural Gas
,”
Appl. Therm. Eng.
,
189
, p.
116735
.10.1016/j.applthermaleng.2021.116735
35.
Chen
,
H.
,
Yang
,
G.
, and
Wu
,
J.
,
2023
, “
A Multi-Zone Thermodynamic Model for Predicting LNG Ageing in Large Cryogenic Tanks
,”
Energy
,
283
, p.
128503
.10.1016/j.energy.2023.128503
36.
Smith
,
J. R.
,
Gkantonas
,
S.
, and
Mastorakos
,
E.
,
2022
, “
Modelling of Boil‐Off and Sloshing Relevant to Future Liquid Hydrogen Carriers
,”
Energies
,
15
(
6
), p.
2046
.10.3390/en15062046
37.
Al Ghafri
,
S. Z. S.
,
Swanger
,
A.
,
Jusko
,
V.
,
Siahvashi
,
A.
,
Perez
,
F.
,
Johns
,
M. L.
, and
May
,
E. F.
,
2022
, “
Modelling of Liquid Hydrogen Boil‐Off
,”
Energies
,
15
(
3
), p.
1149
.10.3390/en15031149
38.
Wang
,
J.
,
Webley
,
P. A.
, and
Hughes
,
T. J.
,
2024
, “
Thermodynamic Modelling of Low Fill Levels in Cryogenic Storage Tanks for Application to Liquid Hydrogen Maritime Transport
,”
Appl. Therm. Eng.
,
256
, p.
124054
.10.1016/j.applthermaleng.2024.124054
39.
Mohekar
,
A. A.
,
Tilley
,
B. S.
, and
Yakovlev
,
V. V.
,
2023
, “
Transverse Electric-Thermal-Fluid Instabilities in an Electromagnetic Heat Exchanger
,”
Int. J. Heat Mass Transfer
,
210
, p.
124187
.10.1016/j.ijheatmasstransfer.2023.124187
40.
Weigand
,
B.
,
2015
,
Analytical Methods for Heat Transfer and Fluid Flow Problems
, 2nd ed.,
Springer
,
New York
.
41.
Arpaci
,
V. S.
, and
Larsen
,
P. S.
,
1984
,
Convection Heat Transfer
,
Prentice Hall
,
Englewood Cliffs, NJ
.
42.
Zhao
,
B.
,
Long
,
W.
, and
Zhou
,
R.
,
2021
, “
A Convective Analytical Model in Turbulent Boundary Layer on a Flat Plate Based on the Unifying Heat Flux Formula
,”
Int. J. Therm. Sci.
,
163
, p.
106784
.10.1016/j.ijthermalsci.2020.106784
43.
Speetjens
,
M.
,
Reusken
,
A.
, and
Marquardt
,
W.
,
2008
, “
Steady-State Solutions in a Nonlinear Pool Boiling Model
,”
Commun. Nonlinear Sci. Numer. Simul.
,
13
(
8
), pp.
1475
1494
.10.1016/j.cnsns.2006.11.001
44.
Pumir
,
A.
,
Barelko
,
V. V.
, and
Buryak
,
E. V.
,
2007
, “
Control of the Boiling Crisis: Analysis of a Model System
,”
Eur. Phys. J. B
,
60
(
1
), pp.
1
8
.10.1140/epjb/e2007-00327-8
45.
Hairer
,
E.
,
Nørsett
,
S. P.
, and
Wanner
,
G.
,
1987
,
Solving Ordinary Differential Equations I, Nonstiff Problems
,
Springer-Verlag
,
New York
.
You do not currently have access to this content.