Abstract

A novel helix-shaped oscillating heat pipe (OHP) designed for enhanced heat transfer in thermal management and heat recovery systems was studied experimentally. Two orientations were explored: side-heated, which is the intended orientation in which improved fluid circulation is predicted, and bottom-heated, a control resembling traditional bottom-heated OHPs. Results showed stronger circulation, reduced temperature differences, and lower startup thresholds in most cases. The side-heated orientation achieved higher maximum heat loads at a fill ratio of 0.5, although the maximum load decreased at a fill ratio of 0.7. Notably, the helix-shaped OHP attained effective thermal conductivity values over 9,000 WmK in multiple test cases and a maximum heat transport of 676 W. Additional parameters were explored, including heat load, fill ratio, condenser temperature, and the presence of noncondensible gases (NCGs). The presence of NCGs increased not only the temperature drop as expected, but also increased the maximum heat transport, indicating potential benefits in certain applications. Elevated condenser temperatures not only decreased the temperature drop, but also reduced maximum heat transport. A previously developed OHP performance model was expanded to evaluate the novel helix-shaped OHP. The model predicted temperature drops during degassed experiments under moderate heat loads reasonably well. However, most data points fell outside the model's scope, emphasizing the need to extend it to handle condenser bubble collapse. The expanded analytical models for side-heated helix-shaped OHPs highlighted a different set of restrictions on circulation than traditional, bottom-heated OHPs, which likely explains the superior performance of the helix-shaped OHP in its intended orientation.

References

1.
Zhang
,
D.
,
He
,
Z.
,
Jiang
,
E.
,
Shen
,
C.
, and
Zhou
,
J.
,
2021
, “
A Review on Start-Up Characteristics of the Pulsating Heat Pipe
,”
Heat Mass Transfer
,
57
(
5
), pp.
723
735
.10.1007/s00231-020-02998-4
2.
Drolen
,
B. L.
, and
Smoot
,
C. D.
,
2017
, “
Performance Limits of Oscillating Heat Pipes: Theory and Validation
,”
J. Thermophys. Heat Transfer
,
31
(
4
), pp.
920
936
.10.2514/1.T5105
3.
Nikolayev
,
V. S.
,
2021
, “
Physical Principles and State-of-the-Art of Modeling of the Pulsating Heat Pipe: A Review
,”
Appl. Therm. Eng.
,
195
, p.
117111
.10.1016/j.applthermaleng.2021.117111
4.
Yang
,
H.
,
Khandekar
,
S.
, and
Groll
,
M.
,
2008
, “
Operational Limit of Closed Loop Pulsating Heat Pipes
,”
Appl. Therm. Eng.
,
28
(
1
), pp.
49
59
.10.1016/j.applthermaleng.2007.01.033
5.
Pawlick
,
M.
, and
Peterson
,
G.
,
2023
, “
Investigation of Mechanisms That Govern Performance Trends in Oscillating Heat Pipes
,”
International Heat Transfer Conference
, Cape Town, South Africa, Aug. 14–18, pp.
190
200
.10.1615/IHTC17.200-190
6.
Ma
,
H. B.
,
2015
,
Oscillating Heat Pipes
,
Springer
,
New York
.
7.
Charoensawan
,
P.
,
Khandekar
,
S.
,
Groll
,
M.
, and
Terdtoon
,
P.
,
2003
, “
Closed Loop Pulsating Heat Pipes: Part a: Parametric Experimental Investigations
,”
Appl. Therm. Eng.
,
23
(
16
), pp.
2009
2020
.10.1016/S1359-4311(03)00159-5
8.
Mameli
,
M.
,
Besagni
,
G.
,
Bansal
,
P. K.
, and
Markides
,
C. N.
,
2022
, “
Innovations in Pulsating Heat Pipes: From Origins to Future Perspectives
,”
Appl. Therm. Eng.
,
203
, p.
117921
.10.1016/j.applthermaleng.2021.117921
9.
Liu
,
X.
,
Sun
,
Q.
,
Zhang
,
C.
, and
Wu
,
L.
,
2016
, “
High-Speed Visual Analysis of Fluid Flow and Heat Transfer in Oscillating Heat Pipes With Different Diameters
,”
Appl. Sci.
,
6
(
11
), p.
321
.10.3390/app6110321
10.
Ji
,
Y.
,
Wu
,
M.
,
Feng
,
Y.
,
Yu
,
C.
,
Chu
,
L.
,
Chang
,
C.
,
Li
,
Y.
,
Xiao
,
X.
, and
Ma
,
H.
,
2020
, “
An Experimental Investigation on the Heat Transfer Performance of a Liquid Metal High-Temperature Oscillating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
149
, p.
119198
.10.1016/j.ijheatmasstransfer.2019.119198
11.
Liu
,
X.
,
Xu
,
L.
,
Wang
,
C.
, and
Han
,
X.
,
2019
, “
Experimental Study on Thermo-Hydrodynamic Characteristics in a Micro Oscillating Heat Pipe
,”
Exp. Therm. Fluid Sci.
,
109
, p.
109871
.10.1016/j.expthermflusci.2019.109871
12.
Kwon
,
G. H.
, and
Kim
,
S. J.
,
2014
, “
Operational Characteristics of Pulsating Heat Pipes With a Dual-Diameter Tube
,”
Int. J. Heat Mass Transfer
,
75
, pp.
184
195
.10.1016/j.ijheatmasstransfer.2014.03.032
13.
Betancur
,
L.
,
Mangini
,
D.
,
Mantelli
,
M.
, and
Marengo
,
M.
,
2020
, “
Experimental Study of Thermal Performance in a Closed Loop Pulsating Heat Pipe With Alternating Superhydrophobic Channels
,”
Therm. Sci. Eng. Prog.
,
17
, p.
100360
.10.1016/j.tsep.2019.100360
14.
Lim
,
J.
, and
Kim
,
S. J.
,
2019
, “
Effect of a Channel Layout on the Thermal Performance of a Flat Plate Micro Pulsating Heat Pipe Under the Local Heating Condition
,”
Int. J. Heat Mass Transfer
,
137
, pp.
1232
1240
.10.1016/j.ijheatmasstransfer.2019.03.121
15.
Okazaki
,
S.
,
Fuke
,
H.
, and
Ogawa
,
H.
,
2021
, “
Performance of Circular Oscillating Heat Pipe for Highly Adaptable Heat Transfer Layout
,”
Appl. Therm. Eng.
,
198
, p.
117497
.10.1016/j.applthermaleng.2021.117497
16.
Thompson
,
S. M.
,
Ma
,
H. B.
, and
Wilson
,
C.
,
2011
, “
Investigation of a Flat-Plate Oscillating Heat Pipe With Tesla-Type Check Valves
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1265
1273
.10.1016/j.expthermflusci.2011.04.014
17.
Qu
,
J.
,
Zhao
,
J.
, and
Rao
,
Z.
,
2017
, “
Experimental Investigation on the Thermal Performance of Three-Dimensional Oscillating Heat Pipe
,”
Int. J. Heat Mass Transfer
,
109
, pp.
589
600
.10.1016/j.ijheatmasstransfer.2017.02.040
18.
Thompson
,
S. M.
,
Ma
,
H.
,
Winholtz
,
R. A.
, and
Wilson
,
C.
,
2009
, “
An Experimental Investigation of Three-Dimensional Flat-Plate Oscillating Heat Pipe
,”
ASME
Paper No. HT2009-88180.10.1115/HT2009-88180
19.
Han
,
X.
,
Wang
,
X.
,
Zheng
,
H.
,
Xu
,
X.
, and
Chen
,
G.
,
2016
, “
Review of the Development of Pulsating Heat Pipe for Heat Dissipation
,”
Renewable Sustainable Energy Rev.
,
59
, pp.
692
709
.10.1016/j.rser.2015.12.350
20.
Senjaya
,
R.
, and
Inoue
,
T.
,
2014
, “
Effects of Non-Condensable Gas on the Performance of Oscillating Heat Pipe, Part I: Theoretical Study
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
1387
1392
.10.1016/j.applthermaleng.2014.02.074
21.
Senjaya
,
R.
, and
Inoue
,
T.
,
2014
, “
Effects of Non-Condensable Gas on the Performance of Oscillating Heat Pipe, Part II: Experimental Study
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
1393
1400
.10.1016/j.applthermaleng.2014.02.075
22.
Sun
,
C.-H.
,
Tseng
,
C.-Y.
,
Yang
,
K.-S.
,
Wu
,
S.-K.
, and
Wang
,
C.-C.
,
2017
, “
Investigation of the Evacuation Pressure on the Performance of Pulsating Heat Pipe
,”
Int. Commun. Heat Mass Transfer
,
85
, pp.
23
28
.10.1016/j.icheatmasstransfer.2017.04.005
23.
Sriudom
,
Y.
,
Rittidech
,
S.
, and
Chompookham
,
T.
,
2014
, “
The Helical Oscillation Heat Pipe: Flow Pattern Behavior Study
,”
Adv. Mech. Eng.
,
7
(
1
), p.
194374
.10.1155/2014/194374
24.
Tseng
,
C.-Y.
,
Yang
,
K.-S.
, and
Wang
,
C.-C.
,
2020
, “
Non-Uniform Three-Dimensional Pulsating Heat Pipe for Anti-Gravity High-Flux Applications
,”
Energies
,
13
(
12
), p.
3068
.10.3390/en13123068
25.
Yu
,
C.
,
Ji
,
Y.
,
Li
,
Y.
,
Liu
,
Z.
,
Chu
,
L.
,
Kuang
,
H.
, and
Wang
,
Z.
,
2022
, “
A Three-Dimensional Oscillating Heat Pipe Filled With Liquid Metal and Ammonia for High-Power and High-Heat-Flux Dissipation
,”
Int. J. Heat Mass Transfer
,
194
, p.
123096
.10.1016/j.ijheatmasstransfer.2022.123096
26.
Battino
,
R.
,
Rettich
,
T. R.
, and
Tominaga
,
T.
,
1984
, “
The Solubility of Nitrogen and Air in Liquids
,”
J. Phys. Chem. Ref. Data
,
13
(
2
), pp.
563
600
.10.1063/1.555713
27.
Pawlick
,
M.
, and
Peterson
,
G.
,
2024
, “
An Analytical Model of Oscillating Heat Pipe Performance
,”
Therm. Sci. Eng. Prog.
,
50
, p.
102517
.10.1016/j.tsep.2024.102517
You do not currently have access to this content.