Abstract

Phonon hydrodynamics originated from the macroscopic energy and momentum balance equations (called Guyer-Krumhansl equations) proposed by Guyer and Krumhansl by solving the linearized Boltzmann transport equation for studying second sound in the normal-process collision dominated phonon transports in an isotropic nonmetallic crystal with a dispersionless frequency spectrum. However, the low-dimensional dielectric materials and semiconductors are anisotropic, and the different branches in their phonon frequency spectrum usually have different group velocities. For such materials, we derive the macroscopic energy and momentum balance equations from the linear Boltzmann transport equation to describe the phonon hydrodynamic transport, and solve the longstanding debate about whether the energy balance equation contains the second-order spatial derivatives of temperature. Finally, by solving the modified Guyer–Krumhansl equations, we find the minimum and maximum values of the length required by the occurrence of second sound in suspended single-layer graphene with the rectangular shape.

References

1.
Sussman
,
J. A.
, and
Thellung
,
A.
,
1963
, “
Thermal Conductivity of Perfect Dielectric Crystals in the Absence of Umklapp Processes
,”
Proc. Phys. Soc.
,
81
(
6
), pp.
1122
1130
.10.1088/0370-1328/81/6/318
2.
Guyer
,
R. A.
, and
Krumhansl
,
J. A.
,
1966
, “
Solution of the Linearized Phonon Boltzmann Equation
,”
Phys. Rev.
,
148
(
2
), pp.
766
778
.10.1103/PhysRev.148.766
3.
Guyer
,
R. A.
, and
Krumhansl
,
J. A.
,
1966
, “
Thermal Conductivity, Second Sound, and Phonon Hydrodynamic Phenomena in Nonmetallic Crystals
,”
Phys. Rev.
,
148
(
2
), pp.
778
788
.10.1103/PhysRev.148.778
4.
Ackerman
,
C. C.
, and
Guyer
,
R. A.
,
1968
, “
Temperature Pulses in Dielectric Solids
,”
Ann. Phys.
,
50
(
1
), pp.
128
185
.10.1016/0003-4916(68)90320-5
5.
McNelly
,
T. F.
,
Rogers
,
S. J.
,
Channin
,
D. J.
,
Rollefson
,
R. J.
,
Goubau
,
W. M.
,
Schmidt
,
G. E.
,
Krumhansl
,
J. A.
, and
Pohl
,
R. O.
,
1970
, “
Heat Pulses in NaF: Onset of Second Sound
,”
Phys. Rev. Lett.
,
24
(
3
), pp.
100
102
.10.1103/PhysRevLett.24.100
6.
Huberman
,
S.
,
Duncan
,
R. A.
,
Chen
,
K.
,
Song
,
B.
,
Chiloyan
,
V.
,
Ding
,
Z.
,
Maznev
,
A. A.
,
Chen
,
G.
, and
Nelson
,
K. A.
,
2019
, “
Observation of Second Sound in Graphite at Temperatures Above 100K
,”
Science
,
364
(
6438
), pp.
375
379
.10.1126/science.aav3548
7.
Beardo
,
A.
,
López-Suárez
,
M.
,
Pérez
,
L. A.
,
Sendra
,
L.
,
Alonso
,
M. I.
,
Melis
,
C.
,
Bafaluy
,
J.
, et al.,
2021
, “
Observation of Second Sound in a Rapidly Varying Temperature Field in Ge
,”
Sci. Adv.
,
7
(
27
), pp.
1
7
.10.1126/sciadv.abg4677
8.
Ding
,
Z.
,
Chen
,
K.
,
Song
,
B.
,
Shin
,
J.
,
Maznev
,
A. A.
,
Nelson
,
K. A.
, and
Chen
,
G.
,
2022
, “
Observation of Second Sound in Graphite Over 200 K
,”
Nat. Commun.
,
13
, p.
285
.10.1038/s41467-021-27907-z
9.
Jeong
,
J.
,
Li
,
X.
,
Lee
,
S.
,
Shi
,
L.
, and
Wang
,
Y.
,
2021
, “
Transient Hydrodynamic Lattice Cooling by Picosecond Laser Irradiation of Graphite
,”
Phys. Rev. Lett.
,
127
(
8
), p.
085901
.10.1103/PhysRevLett.127.085901
10.
Lee
,
S.
,
Broido
,
D.
,
Esfarjani
,
K.
, and
Chen
,
G.
,
2015
, “
Hydrodynamic Phonon Transport in Suspended Graphene
,”
Nat. Commun.
,
6
(
1
), p.
6290
.10.1038/ncomms7290
11.
Cepellotti
,
A.
,
Fugallo
,
G.
,
Paulatto
,
L.
,
Lazzeri
,
M.
,
Mauri
,
F.
, and
Marzari
,
N.
,
2015
, “
Phonon Hydrodynamics in Two-Dimensional Materials
,”
Nat. Commun.
,
6
(
1
), p.
6400
.10.1038/ncomms7400
12.
Jou
,
D.
,
Sellitto
,
A.
, and
Alvarez
,
F. X.
,
2011
, “
Heat Waves and Phonon-Wall Collisions in Nanowires
,”
Proc. R. Soc. A
,
467
(
2133
), pp.
2520
2533
.10.1098/rspa.2010.0645
13.
Jou
,
D.
,
Casas-Vázquez
,
J.
, and
Lebon
,
G.
,
2010
,
Extended Irreversible Thermodynamics
,
Springer
,
Berlin
.
14.
Lee
,
S.
, and
Lindsay
,
L.
,
2017
, “
Hydrodynamic Phonon Drift and Second Sound in a (20,20) Single-Wall Carbon Nanotube
,”
Phys. Rev. B
,
95
(
18
), p.
184304
.10.1103/PhysRevB.95.184304
15.
Xu
,
M.
,
2021
, “
Thermal Oscillations, Second Sound and Thermal Resonance in Phonon Hydrodynamics
,”
Proc. R. Soc. A
,
477
(
2247
), p.
20200913
.10.1098/rspa.2020.0913
16.
Balandin
,
A. A.
,
Ghosh
,
S.
,
Bao
,
W.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Miao
,
F.
, and
Lau
,
C. N.
,
2008
, “
Superior Thermal Conductivity of Single-Layer Graphene
,”
Nano Lett.
,
8
(
3
), pp.
902
907
.10.1021/nl0731872
17.
Kang
,
J. S.
,
Li
,
M.
,
Wu
,
H.
,
Nguyen
,
H.
, and
Hu
,
Y.
,
2018
, “
Experimental Observation of High Thermal Conductivity in Boron Arsenide
,”
Science
,
361
(
6402
), pp.
575
578
.10.1126/science.aat5522
18.
Li
,
S.
,
Zheng
,
Q.
,
Lv
,
Y.
,
Liu
,
X.
,
Wang
,
X.
,
Huang
,
P. Y.
,
Cahill
,
D. G.
, and
Lv
,
B.
,
2018
, “
High Thermal Conductivity in Cubic Boron Arsenide Crystals
,”
Science
,
361
(
6402
), pp.
579
581
.10.1126/science.aat8982
19.
Tian
,
F.
,
Song
,
B.
,
Chen
,
X.
,
Ravichandran
,
N. K.
,
Lv
,
Y.
,
Chen
,
K.
,
Sullivan
,
S.
, et al.,
2018
, “
Unusual High Thermal Conductivity in Boron Arsenide Bulk Crystals
,”
Science
,
361
(
6402
), pp.
582
585
.10.1126/science.aat7932
20.
Torres
,
P.
,
Ziabari
,
A.
,
Torelló
,
A.
,
Bafaluy
,
J.
,
Camacho
,
J.
,
Cartoixà
,
X.
,
Shakouri
,
A.
, and
Alvarez
,
F. X.
,
2018
, “
Emergence of Hydrodynamic Heat Transport in Semiconductors at the Nanoscale
,”
Phys. Rev. Mater.
,
2
(
7
), p.
076001
.10.1103/PhysRevMaterials.2.076001
21.
Beardo
,
A.
,
Calvo-Schwarzwälder
,
M.
,
Camacho
,
J.
,
Myers
,
T. G.
,
Torres
,
P.
,
Sendra
,
L.
,
Alvarez
,
F. X.
, and
Bafaluy
,
J.
,
2019
, “
Hydrodynamic Heat Transport in Compact and Holey Silicon Thin Films
,”
Phys. Rev. Appl.
,
11
(
3
), p.
034003
.10.1103/PhysRevApplied.11.034003
22.
Beardo
,
A.
,
Knobloch
,
J. L.
,
Sendra
,
L.
,
Bafaluy
,
J.
,
Frazer
,
T. D.
,
Chao
,
W.
,
Hernandez-Charpak
,
J. N.
, et al.,
2021
, “
A General and Predictive Understanding of Thermal Transport From 1D- and 2D-Confined Nanostructures: Theory and Experiment
,”
ACS Nano
,
15
(
8
), pp.
13019
13030
.10.1021/acsnano.1c01946
23.
Beardo
,
A.
,
Alajlouni
,
S.
,
Sendra
,
L.
,
Bafaluy
,
J.
,
Ziabari
,
A.
,
Xuan
,
Y.
,
Camacho
,
J.
,
Shakouri
,
A.
, and
Alvarez
,
F. X.
,
2022
, “
Hydrodynamic Thermal Transport in Silicon at Temperatures Ranging From 100 to 300K
,”
Phys. Rev. B
,
105
(
16
), p.
165303
.10.1103/PhysRevB.105.165303
24.
Machida
,
Y.
,
Subedi
,
A.
,
Akiba
,
K.
,
Miyake
,
A.
,
Tokunaga
,
M.
,
Akahama
,
Y.
,
Izawa
,
K.
, and
Behnia
,
K.
,
2018
, “
Observation of Poiseuille Flow of Phonons in Black Phosphorus
,”
Sci. Adv.
,
4
(
6
), pp.
1
9
.10.1126/sciadv.aat3374
25.
Shang
,
M.-Y.
,
Zhang
,
C.
,
Guo
,
Z.
, and
,
J.-T.
,
2020
, “
Heat Vortex in Hydrodynamic Phonon Transport of Two-Dimensional Materials
,”
Sci. Rep.
,
10
(
1
), p.
8272
.10.1038/s41598-020-65221-8
26.
Hardy
,
R. J.
,
1970
, “
Phonon Boltzmann Equation and Second Sound in Solids
,”
Phys. Rev. B
,
2
(
4
), pp.
1193
1207
.10.1103/PhysRevB.2.1193
27.
Sendra
,
L.
,
Beardo
,
A.
,
Bafaluy
,
J.
,
Torres
,
P.
,
Alvarez
,
F. X.
, and
Camacho
,
J.
,
2022
, “
Hydrodynamic Heat Transport in Dielectric Crystals in the Collective Limit and the Drifting/Driftless Velocity Conundrum
,”
Phys. Rev. B
,
106
(
15
), p.
155301
.10.1103/PhysRevB.106.155301
28.
Sendra
,
L.
,
Beardo
,
A.
,
Torres
,
P.
,
Bafaluy
,
J.
,
Alvarez
,
F. X.
, and
Camacho
,
J.
,
2021
, “
Derivation of a Hydrodynamic Heat Equation From the Phonon Boltzmann Equation for General Semiconductors
,”
Phys. Rev. B
,
103
(
14
), p.
L140301
.10.1103/PhysRevB.103.L140301
29.
Guo
,
Y.
, and
Wang
,
M.
,
2018
, “
Phonon Hydrodynamics for Nanoscale Heat Transport at Ordinary Temperatures
,”
Phys. Rev. B
,
97
(
3
), p.
035421
.10.1103/PhysRevB.97.035421
30.
Guo
,
Y.
, and
Wang
,
M.
,
2015
, “
Phonon Hydrodynamics and Its Applications in Nanoscale Heat Transport
,”
Phys. Rep.
,
595
, pp.
1
44
.10.1016/j.physrep.2015.07.003
31.
Hardy
,
R. J.
, and
Albers
,
D. L.
,
1974
, “
Hydrodynamic Approximation to the Phonon Boltzmann Equations
,”
Phys. Rev. B
,
10
(
8
), pp.
3546
3551
.10.1103/PhysRevB.10.3546
32.
Shankar
,
R.
,
1994
,
Principles of Quantum Mechanics
, 2nd ed.,
Plenum Press
,
New York
.
You do not currently have access to this content.