Abstract

An experimental apparatus was designed to study the impacts of wettability on evaporation of water from Ottawa sand. Evaporation rates were measured for: (1) a 5.7-cm-thick layer of hydrophilic Ottawa sand; (2) a 5.7-cm-thick layer with 12% hydrophobic content, consisting of a 0.7-cm-layer of n-Octyltriethoxysilane-coated hydrophobic sand buried 1.8 cm below the surface of hydrophilic sand; and (3) a 5.7-cm-thick layer with mixed wettabilities, consisting of 12% n-Octyltriethoxysilane-coated hydrophobic sand mixed into hydrophilic sand. The sand–water mixtures experienced forced convection above and through the sand layer, while a simulated solar flux (i.e., 112±20 W/m2) was applied. Evaporation from homogeneous porous media is classified into the constant-rate, falling-rate, and slow-rate periods. Wettability affected the observed evaporation mechanisms, including the transition from constant-rate to falling-rate periods. Evaporation entered the falling-rate period at 12%, 20%, and 24% saturations for the all hydrophilic sand, hydrophobic layer, and hydrophobic mixture, respectively. Wettability affected the duration of the experiments, as the all hydrophilic sand, hydrophobic layer, and hydrophobic mixture lasted 17, 20, and 26 trials, respectively. Both experiments with hydrophobic particles lasted longer than the all hydrophilic experiment and had shorter constant-rate evaporation periods, suggesting hydrophobic material interrupts capillary action of water to the soil surface and reduces evaporation. Sand temperatures suggest more evaporation occurred near the test section inlet for higher saturations and the hydrophobic layer experienced more evaporation occur near the outlet. Evaporation fluxes were up to 12× higher than the vapor diffusion flux due to enhanced vapor diffusion and forced convection.

References

1.
University of Kansas Geological Survey, 2023, “
Water in Kansas
,” University of Kansas, Lawrence, KS, accessed June 12, 2023, https://geokansas.ku.edu/water-kansas#:∼:text=Almost%20all%20of%20the%20water,to%20pump%20the%20groundwater%20out
2.
K-State News,
2015
, “
Study Finds High Plains Aquifer Peak Use by State, Overall Usage Decline
,” Kansas State University, Manhattan, KS, accessed May 31, 2024, https://www.k-state.edu/media/newsreleases/nov15/aquifer111615.html
3.
Kansas State University,
2020
, “
Kansas Climate
,” Kansas State University, Manhattan, KS, accessed June 12, 2023, https://climate.k-state.edu/basics/
4.
McGuire
,
V. L.
,
2014
, “
Water-level changes and change in water in storage in the High Plains aquifer, predevelopment to 2013 and 2011-13
,” United States Geological Survey, Reston, VA, Report No.
2014-5218
.10.3133/sir20145218
5.
Ochsner
,
T.
,
Howerton
,
E.
, and
Ellis
,
B.
,
2019
, “
Rain or Shine
,” Oklahoma State University, Stillwater, OK.
6.
Chakraborty
,
P. P.
,
Ross
,
M.
,
Bindra
,
H.
, and
Derby
,
M. M.
,
2022
, “
Evaporative Drying From Hydrophilic or Hydrophobic Homogeneous Porous Columns: Consequences of Wettability, Porous Structure and Hydraulic Connectivity
,”
Transp. Porous Media
,
143
(
3
), pp.
551
578
.10.1007/s11242-022-01775-7
7.
Qiu
,
G. Y.
, and
Ben-Asher
,
J.
,
2010
, “
Experimental Determination of Soil Evaporation Stages With Soil Surface Temperature
,”
Soil Sci. Soc. Am. J.
,
74
(
1
), pp.
13
22
.10.2136/sssaj2008.0135
8.
Gutierrez
,
M. M.
,
Cameron-Harp
,
M. V.
,
Chakraborty
,
P. P.
,
Stallbaumer-Cyr
,
E. M.
,
Morrow
,
J. A.
,
Hansen
,
R. R.
, and
Derby
,
M. M.
,
2022
, “
Investigating a Microbial Approach to Water Conservation: Effects of Bacillus Subtilis and Surfactin on Evaporation Dynamics in Loam and Sandy Loam Soils
,”
Front. Sustainable Food Syst.
,
6
, p.
441
.10.3389/fsufs.2022.959591
9.
Hillel
,
D.
,
1998
,
Environmental Soil Physics
,
Academic Press
,
Waltham, MA
.
10.
Gupta
,
B.
,
Shah
,
D.
,
Mishra
,
B.
,
Joshi
,
P.
,
Gandhi
,
V. G.
, and
Fougat
,
R.
,
2015
, “
Effect of Top Soil Wettability on Water Evaporation and Plant Growth
,”
J. Colloid Interface Sci.
,
449
, pp.
506
513
.10.1016/j.jcis.2015.02.018
11.
Davarzani
,
H.
,
Smits
,
K.
,
Tolene
,
R. M.
, and
Illangasekare
,
T.
,
2014
, “
Study of the Effect of Wind Speed on Evaporation From Soil Through Integrated Modeling of the Atmospheric Boundary Layer and Shallow Subsurface
,”
Water Resour. Res.
,
50
(
1
), pp.
661
680
.10.1002/2013WR013952
12.
Knappett
,
J.
, and
Craig
,
R. F.
,
2012
,
Craig's Soil Mechanics
,
CRC Press
,
Boca Raton, FL
.
13.
An
,
N.
,
Tang
,
C.-S.
,
Xu
,
S.-K.
,
Gong
,
X.-P.
,
Shi
,
B.
, and
Inyang
,
H. I.
,
2018
, “
Effects of Soil Characteristics on Moisture Evaporation
,”
Eng. Geol.
,
239
, pp.
126
135
.10.1016/j.enggeo.2018.03.028
14.
Shokri
,
N.
,
Lehmann
,
P.
, and
Or
,
D.
,
2008
, “
Effects of Hydrophobic Layers on Evaporation From Porous Media
,”
Geophys. Res. Lett.
,
35
(
19
), p. L19407.10.1029/2008GL035230
15.
Philip
,
J.
, and
De Vries
,
D. D.
,
1957
, “
Moisture Movement in Porous Materials Under Temperature Gradients
,”
EOS, Trans. Am. Geophys. Union
,
38
(
2
), pp.
222
232
.10.1029/TR038i002p00222
16.
Cary
,
J.
,
1963
, “
Onsager's Relation and the Non-Isothermal Diffusion of Water Vapor
,”
J. Phys. Chem.
,
67
(
1
), pp.
126
129
.10.1021/j100795a030
17.
Jury
,
W.
, and
Letey Jr
,
J.
,
1979
, “
Water Vapor Movement in Soil: Reconciliation of Theory and Experiment
,”
Soil Sci. Soc. Am. J.
,
43
(
5
), pp.
823
827
.10.2136/sssaj1979.03615995004300050001x
18.
Chakraborty
,
P. P.
,
Huber
,
R.
,
Chen
,
X.
, and
Derby
,
M. M.
,
2018
, “
Evaporation From Simulated Soil Pores: Effects of Wettability, Liquid Islands, and Breakup
,”
Interfacial Phenom. Heat Transfer
,
6
(
4
), pp.
391
407
.10.1615/InterfacPhenomHeatTransfer.2019030171
19.
Shokri
,
N.
,
Lehmann
,
P.
, and
Or
,
D.
,
2009
, “
Characteristics of Evaporation From Partially Wettable Porous Media
,”
Water Resour. Res.
,
45
(
2
), p. W02415.10.1029/2008WR007185
20.
DeBano
,
L. F.
,
1981
, Water Repellent Soils: A State-of-the-Art, U.S. Department of Agriculture, Forest Service, Pacific Southwest Forest and Range Experiment Station, Berkeley, Calif.
21.
Doerr
,
S. H.
,
Shakesby
,
R.
, and
Walsh
,
R.
,
2000
, “
Soil Water Repellency: Its Causes, Characteristics and Hydro-Geomorphological Significance
,”
Earth-Sci. Rev.
,
51
(
1–4
), pp.
33
65
.10.1016/S0012-8252(00)00011-8
22.
Bachmann
,
J.
,
Woche
,
S.
,
Goebel
,
M. O.
,
Kirkham
,
M.
, and
Horton
,
R.
,
2003
, “
Extended Methodology for Determining Wetting Properties of Porous Media
,”
Water Resour. Res.
,
39
(
12
), p. SBH11.10.1029/2003WR002143
23.
Ellerbrock
,
R.
,
Gerke
,
H.
,
Bachmann
,
J.
, and
Goebel
,
M.-O.
,
2005
, “
Composition of Organic Matter Fractions for Explaining Wettability of Three Forest Soils
,”
Soil Sci. Soc. Am. J.
,
69
(
1
), pp.
57
66
.10.2136/sssaj2005.0057
24.
Jaramillo
,
D.
,
Dekker
,
L.
,
Ritsema
,
C.
, and
Hendrickx
,
J.
,
2000
, “
Occurrence of Soil Water Repellency in Arid and Humid Climates
,”
J. Hydrol.
,
231–232
, pp.
105
111
.10.1016/S0022-1694(00)00187-6
25.
Morley
,
C.
,
Mainwaring
,
K.
,
Doerr
,
S.
,
Douglas
,
P.
,
Llewellyn
,
C.
, and
Dekker
,
L.
,
2005
, “
Organic Compounds at Different Depths in a Sandy Soil and Their Role in Water Repellency
,”
Soil Res.
,
43
(
3
), pp.
239
249
.10.1071/SR04094
26.
Wallis
,
M.
, and
Horne
,
D.
,
1992
, “
Soil Water Repellency
,”
Adv. Soil Sci.
,
20
, pp.
91
146
.10.1007/978-1-4612-2930-8_2
27.
Certini
,
G.
,
2005
, “
Effects of Fire on Properties of Forest Soils: A Review
,”
Oecologia
,
143
(
1
), pp.
1
10
.10.1007/s00442-004-1788-8
28.
Cerdà
,
A.
, and
Doerr
,
S. H.
,
2007
, “
Soil Wettability, Runoff and Erodibility of Major Dry‐Mediterranean Land Use Types on Calcareous Soils
,”
Hydrol. Processes: Int. J.
,
21
(
17
), pp.
2325
2336
.10.1002/hyp.6755
29.
Booker
,
F.
,
Dietrich
,
W.
, and
Collins
,
L.
,
1993
, “
Runoff and Erosion After the Oakland Firestorm
,”
Calif. Geol.
,
46
(
6
), pp.
159
173
.https://www.researchgate.net/publication/284667277_Runoff_and_erosion_after_the_Oakland_firestorm
30.
Da Re
,
G.
,
Germaine
,
J. T.
, and
Ladd
,
C. C.
,
2001
, “
Physical Mechanisms Controlling the Pre-Failure Stress-Strain Behavior of Frozen Sand
,” Massachusetts Institute of Technology, Cambridge, MA.
31.
Truong
,
Q. H.
,
Lee
,
J.-S.
,
Dong
,
Y.
, and
Yun
,
T. S.
,
2011
, “
Capillary Induced Small-Strain Stiffness for Hydrophilic and Hydrophobic Granular Materials: Experimental and Numerical Studies
,”
Soils Found.
,
51
(
4
), pp.
713
721
.10.3208/sandf.51.713
32.
Tester
,
M.
, and
Morris
,
C.
,
1987
, “
The Penetration of Light Through Soil
,”
Plant, Cell Environ.
,
10
(
4
), pp.
281
286
.10.1111/j.1365-3040.1987.tb01607.x
33.
Baranoski
,
G. V.
,
Kimmel
,
B. W.
,
Varsa
,
P.
, and
Iwanchyshyn
,
M.
,
2019
, “
On the Light Penetration in Natural Sands
,”
Proceedings of the IGARSS 2019-2019 IEEE International Geoscience and Remote Sensing Symposium
,
Yokohama
,
Japan
, July 28–Aug. 2, pp.
6933
6936
.
34.
Humboldt,
2024
, “
Humboldt: Ottawa Test Sand for Cube Molds
,” Humboldt, Elgin, IL, accessed Oct. 15, 2022, https://www.humboldtmfg.com/ottawa-test-sand.html
35.
McGaw
,
R.
,
1968
, “
Thermal Conductivity of Compacted Sand/Ice Mixtures
,” Highway Research Record,
Highway Research Board
, Hanover, NH.
36.
Tarnawski
,
V. R.
,
Momose
,
T.
,
Leong
,
W.
,
Bovesecchi
,
G.
, and
Coppa
,
P.
,
2009
, “
Thermal Conductivity of Standard Sands—Part I. Dry-State Conditions
,”
Int. J. Thermophys.
,
30
(
3
), pp.
949
968
.10.1007/s10765-009-0596-0
37.
Kersten
,
M. S.
,
1949
, “
Thermal Properties of Soils
,” University of Minnesota, Minneapolis, MN.
38.
Ratliff
,
L.
,
Ritchie
,
J.
, and
Cassel
,
D.
,
1983
, “
Field‐Measured Limits of Soil Water Availability as Related to Laboratory‐Measured Properties
,”
Soil Sci. Soc. Am. J.
,
47
(
4
), pp.
770
775
.10.2136/sssaj1983.03615995004700040032x
39.
Robichaud
,
P.
, and
Hungerford
,
R.
,
2000
, “
Water Repellency by Laboratory Burning of Four Northern Rocky Mountain Forest Soils
,”
J. Hydrol.
,
231–232
, pp.
207
219
.10.1016/S0022-1694(00)00195-5
40.
Hillel
,
D.
,
2013
,
Fundamentals of Soil Physics
,
Academic Press
,
Waltham, MA
.
41.
Bastidas
,
A. M. P.
,
2016
,
Ottawa F-65 Sand Characterization
,
University of California
,
Davis, CA
.
42.
El Ghoraiby
,
M.
,
Park
,
H.
, and
Manzari
,
M. T.
,
2020
, “
Physical and Mechanical Properties of Ottawa F65 Sand
,”
Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading: LEAP-UCD-2017
, pp.
45
67
.10.1007/978-3-030-22818-7_3
43.
Kutter
,
B. L.
,
Manzari
,
M. T.
, and
Zeghal
,
M.
,
2019
, Model Tests and Numerical Simulations of Liquefaction and Lateral Spreading: LEAP-UCD-2017,
Springer Nature
,
New York
.
44.
Kine
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng.
,
75
(
1
), pp.
3
8
.http://54.243.252.9/engr-1330-webroot/6-Projects/P-InstrumentCalibration/Kline_McClintock1953.pdf
45.
Dai
,
X.
,
Yang
,
F.
,
Yang
,
R.
,
Huang
,
X.
,
Rigdon
,
W. A.
,
Li
,
X.
, and
Li
,
C.
,
2014
, “
Biphilic Nanoporous Surfaces Enabled Exceptional Drag Reduction and Capillary Evaporation Enhancement
,”
Appl. Phys. Lett.
,
105
(
19
), p.
191611
.10.1063/1.4901962
46.
Moran
,
M. J.
,
Shapiro
,
H. N.
,
Boettner
,
D. D.
, and
Bailey
,
M. B.
,
2010
,
Fundamentals of Engineering Thermodynamics
,
Wiley
,
Hoboken, NJ
.
47.
Bergman
,
T. L.
,
Bergman
,
T. L.
,
Incropera
,
F. P.
,
Dewitt
,
D. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Hoboken, NJ
.
48.
Bejan
,
A.
,
2013
,
Convection Heat Transfer
,
Wiley
,
Hoboken, NJ
.
49.
Gallego-Elvira
,
B.
,
Baille
,
A.
,
Martín-Gorriz
,
B.
,
Maestre-Valero
,
J. F.
, and
Martínez-Alvarez
,
V.
,
2012
, “
Evaluation of Evaporation Estimation Methods for a Covered Reservoir in a Semi-Arid Climate (South-Eastern Spain)
,”
J. Hydrol.
,
458–459
, pp.
59
67
.10.1016/j.jhydrol.2012.06.035
50.
Jacobs
,
A.
,
Verhoef
,
A.
, and
de Bruin
,
H.
,
1996
, “
Sensible Heat Flux From Sparse Vegetation Estimated Using Nusselt Numbers
,”
Phys. Chem. Earth
,
21
(
3
), pp.
107
110
.10.1016/S0079-1946(97)85569-3
51.
Jacobs
,
A. F.
, and
Verhoef
,
A.
,
1997
, “
Soil Evaporation From Sparse Natural Vegetation Estimated From Sherwood Numbers
,”
J. Hydrol.
,
188–189
, pp.
443
452
.10.1016/S0022-1694(96)03186-1
You do not currently have access to this content.