Abstract

In this paper, a systematic numerical study of pool boiling heat transfer on a mixed wettability heated surface is done using the lattice Boltzmann method (LBM) with a multiple relaxation time (MRT)-based collision operator. The effect of the design parameters, viz, size of the hydrophobic patch (D), spacing between hydrophobic patches (L), number of hydrophobic patches (N), and uneven-sized patches, on pool boiling was studied and results are explained through detailed analysis of bubble nucleation, growth, coalescence, and departure from the heated surface. The results show that mixed wettability surfaces with strategically sized and positioned hydrophobic patches on a hydrophilic surface can result in high heat flux for pool boiling across the entire range of surface superheat or Jacob number (Ja) by combining the advantages of hydrophobic surface in nucleate boiling and hydrophilic surface in transition and film boiling. Further, the mixed wettability surface can delay the onset of film boiling compared to a pure or superhydrophilic surface thereby resulting in higher critical heat flux (CHF). A hydrophobic to total surface area ratio of 30–40% was found to be optimal for all ranges of surface superheat or Jacob number (Ja), which agrees well with the experimental result of 38.46% reported by Motezakker et al. (2019, “Optimum Ratio of Hydrophobic to Hydrophilic Areas of Biphilic Surfaces in Thermal Fluid Systems Involving Boiling,” Int. J. Heat Mass Transfer, 135, pp. 164–174).

References

1.
Nukiyama
,
S.
,
1966
, “
The Maximum and Minimum Values of the Heat Q Transmitted From Metal to Boiling Water Under Atmospheric Pressure
,”
Int. J. Heat Mass Transfer
,
9
(
12
), pp.
1419
1433
.10.1016/0017-9310(66)90138-4
2.
Jo
,
H. J.
,
Kim
,
S. H.
,
Park
,
H. S.
, and
Kim
,
M. H.
,
2014
, “
Critical Heat Flux and Nucleate Boiling on Several Heterogeneous Wetting Surfaces: Controlled Hydrophobic Patterns on a Hydrophilic Substrate
,”
Int. J. Multiphase Flow
,
62
, pp.
101
109
.10.1016/j.ijmultiphaseflow.2014.02.006
3.
Bourdon
,
B.
,
Rioboo
,
R.
,
Marengo
,
M.
,
Gosselin
,
E.
, and
De Coninck
,
J.
,
2012
, “
Influence of the Wettability on the Boiling Onset
,”
Langmuir
,
28
(
2
), pp.
1618
1624
.10.1021/la203636a
4.
Suroto
,
B. J.
,
Tashiro
,
M.
,
Hirabayashi
,
S.
,
Hidaka
,
S.
,
Kohno
,
M.
, and
Takata
,
Y.
,
2013
, “
Effects of Hydrophobic-Spot Periphery and Subcooling on Nucleate Pool Boiling From a Mixed-Wettability Surface
,”
J. Therm. Sci. Technol.
,
8
(
1
), pp.
294
308
.10.1299/jtst.8.294
5.
Zhang
,
W.
,
Chai
,
Y.
,
Xu
,
J.
,
Liu
,
G.
, and
Sun
,
Y.
,
2018
, “
3D Heterogeneous Wetting Microchannel Surfaces for Boiling Heat Transfer Enhancement
,”
Appl. Surf. Sci.
,
457
, pp.
891
901
.10.1016/j.apsusc.2018.07.021
6.
Zhan
,
H.
,
Li
,
S.
,
Jin
,
Z.
,
Zhang
,
G.
,
Wang
,
L.
,
Li
,
Q.
, and
Zhang
,
Z.
,
2022
, “
Study on Boiling Heat Transfer of Surface Modification Based on Lattice Boltzmann and Experiments
,”
J. Mech. Sci. Technol.
,
36
(
2
), pp.
1025
1039
.10.1007/s12206-022-0148-0
7.
Zhang
,
L.
,
Wang
,
T.
,
Kim
,
S.
, and
Jiang
,
Y.
,
2020
, “
The Effects of Wall Superheat and Surface Wettability on Nucleation Site Interactions During Boiling
,”
Int. J. Heat Mass Transfer
,
146
, p.
118820
.10.1016/j.ijheatmasstransfer.2019.118820
8.
Motezakker
,
A. R.
,
Sadaghiani
,
A. K.
,
Çelik
,
S.
,
Larsen
,
T.
,
Villanueva
,
L. G.
, and
Koşar
,
A.
,
2019
, “
Optimum Ratio of Hydrophobic to Hydrophilic Areas of Biphilic Surfaces in Thermal Fluid Systems Involving Boiling
,”
Int. J. Heat Mass Transfer
,
135
, pp.
164
174
.10.1016/j.ijheatmasstransfer.2019.01.139
9.
Ahmad
,
S.
,
Liu
,
H.
,
Shi
,
Y.
,
Chen
,
J.
, and
Zhao
,
J.
,
2021
, “
The Study of Nucleation Site Interactions on the Mixed Wettability Rough Surface
,”
Int. Commun. Heat Mass Transfer
,
126
, p.
105372
.10.1016/j.icheatmasstransfer.2021.105372
10.
Takata
,
Y.
,
Hidaka
,
S.
,
Cao
,
J. M.
,
Nakamura
,
T.
,
Yamamoto
,
H.
,
Masuda
,
M.
, and
Ito
,
T.
,
2005
, “
Effect of Surface Wettability on Boiling and Evaporation
,”
Energy
,
30
(
2–4
), pp.
209
220
.10.1016/j.energy.2004.05.004
11.
Gong
,
S.
, and
Cheng
,
P.
,
2015
, “
Numerical Simulation of Pool Boiling Heat Transfer on Smooth Surfaces With Mixed Wettability by Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
80
, pp.
206
216
.10.1016/j.ijheatmasstransfer.2014.08.092
12.
Ma
,
X.
, and
Cheng
,
P.
,
2019
, “
3D Simulations of Pool Boiling Above Smooth Horizontal Heated Surfaces by a Phase-Change Lattice Boltzmann Method
,”
Int. J. Heat Mass Transfer
,
131
, pp.
1095
1108
.10.1016/j.ijheatmasstransfer.2018.11.103
13.
Li
,
W. X.
,
Li
,
Q.
,
Yu
,
Y.
, and
Wen
,
Z. X.
,
2020
, “
Enhancement of Nucleate Boiling by Combining the Effects of Surface Structure and Mixed Wettability: A Lattice Boltzmann Study
,”
Appl. Therm. Eng.
,
180
, p.
115849
.10.1016/j.applthermaleng.2020.115849
14.
Sun
,
X. Z.
,
Li
,
Q.
,
Li
,
W. X.
,
Wen
,
Z. X.
, and
Liu
,
B.
,
2022
, “
Enhanced Pool Boiling on Microstructured Surfaces With Spatially-Controlled Mixed Wettability
,”
Int. J. Heat Mass Transfer
,
183
, p.
122164
.10.1016/j.ijheatmasstransfer.2021.122164
15.
Feng
,
Y.
,
Chang
,
F.
,
Hu
,
Z.
,
Li
,
H.
, and
Zhao
,
J.
,
2021
, “
Investigation of Pool Boiling Heat Transfer on Hydrophilic-Hydrophobic Mixed Surface With Micro-Pillars Using LBM
,”
Int. J. Therm. Sci.
,
163
, p.
106814
.10.1016/j.ijthermalsci.2020.106814
16.
He
,
X.
,
Zou
,
Q.
,
Luo
,
L. S.
, and
Dembo
,
M.
,
1997
, “
Analytic Solutions of Simple Flows and Analysis of Nonslip Boundary Conditions for the Lattice Boltzmann BGK Model
,”
J. Stat. Phys.
,
87
(
1–2
), pp.
115
136
.10.1007/BF02181482
17.
Li
,
Q.
,
Kang
,
Q. J.
,
Francois
,
M. M.
,
He
,
Y. L.
, and
Luo
,
K. H.
,
2015
, “
Lattice Boltzmann Modeling of Boiling Heat Transfer: The Boiling Curve and the Effects of Wettability
,”
Int. J. Heat Mass Transfer
,
85
, pp.
787
796
.10.1016/j.ijheatmasstransfer.2015.01.136
18.
Mondal
,
K.
, and
Bhattacharya
,
A.
,
2021
, “
Numerical Modeling of Adjacent Bubble Interactions Under the Influence of Induced Vibrations in Liquid Pool Using Lattice Boltzmann Method (LBM)
,”
J. Appl. Phys.
,
130
(
22
), p.
224701
.10.1063/5.0069152
19.
Gong
,
S.
, and
Cheng
,
P.
,
2012
, “
A Lattice Boltzmann Method for Simulation of Liquid-Vapor Phase-Change Heat Transfer
,”
Int. J. Heat Mass Transfer
,
55
(
17–18
), pp.
4923
4927
.10.1016/j.ijheatmasstransfer.2012.04.037
20.
,
W. F.
,
1935
, “
Berechnung Des Maximalvolumes Von Dampfblasen
,”
Phys. Z.
,
36
, pp.
379
384
.
21.
Krüger
,
T.
,
Kusumaatmaja
,
H.
,
Kuzmin
,
A.
,
Shardt
,
O.
,
Silva
,
G.
, and
Viggen
,
E. M.
,
2017
, “
Basics of Hydrodynamics and Kinetic Theory
,”
The Lattice Boltzmann Method. Graduate Texts in Physics,
Springer, Cham, Switzerland.10.1007/978-3-319-44649-3_1
22.
Benzi
,
R.
,
Biferale
,
L.
,
Sbragaglia
,
M.
,
Succi
,
S.
, and
Toschi
,
F.
,
2006
, “
Mesoscopic Modeling of a Two-Phase Flow in the Presence of Boundaries: The Contact Angle
,”
Phys. Rev. E
,
74
(
2
), pp.
1
14
.10.1103/PhysRevE.74.021509
23.
Li
,
Q.
,
Yu
,
Y.
, and
Wen
,
Z. X.
,
2020
, “
How Does Boiling Occur in Lattice Boltzmann Simulations?
,”
Phys. Fluids
,
32
(
9
), p.
093306
.10.1063/5.0015491
24.
Jo
,
H.
,
Ahn
,
H. S.
,
Kang
,
S.
, and
Kim
,
M. H.
,
2011
, “
A Study of Nucleate Boiling Heat Transfer on Hydrophilic, Hydrophobic and Heterogeneous Wetting Surfaces
,”
Int. J. Heat Mass Transfer
,
54
(
25–26
), pp.
5643
5652
.10.1016/j.ijheatmasstransfer.2011.06.001
25.
Kandlikar
,
S. G.
,
2013
, “
Controlling Bubble Motion Over Heated Surface Through Evaporation Momentum Force to Enhance Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
102
(
5
), p.
051611
.10.1063/1.4791682
26.
Kong
,
X.
,
Wei
,
J.
,
Deng
,
Y.
, and
Zhang
,
Y.
,
2018
, “
A Study on Enhancement of Boiling Heat Transfer by Mixed-Wettability Surface
,”
Heat Transfer Eng.
,
39
(
17–18
), pp.
1552
1561
.10.1080/01457632.2017.1369845
You do not currently have access to this content.