Abstract

Monte Carlo simulations for photon transport are commonly used to predict the spectral response, including reflectance, absorptance, and transmittance in nanoparticle laden media, while the computational cost could be high. In this study, we demonstrate a general purpose fully connected neural network approach, trained with Monte Carlo simulations, to accurately predict the spectral response while dramatically accelerating the computational speed. Monte Carlo simulations are first used to generate a training set with a wide range of optical properties covering dielectrics, semiconductors, and metals. Each input is normalized, with the scattering and absorption coefficients normalized on a logarithmic scale to accelerate the training process and reduce error. A deep neural network with ReLU activation is trained on this dataset with the optical properties and medium thickness as the inputs, and diffuse reflectance, absorptance, and transmittance as the outputs. The neural network is validated on a validation set with randomized optical properties, as well as nanoparticle medium examples including barium sulfate, aluminum, and silicon. The error in the spectral response predictions is within 1% which is sufficient for many applications, while the speedup is 1–3 orders of magnitude. This machine learning accelerated approach can allow for high throughput screening, optimization, or real-time monitoring of nanoparticle media's spectral response.

References

1.
Frisvad
,
J. R.
,
Christensen
,
N. J.
, and
Jensen
,
H. W.
,
2007
, “
Computing the Scattering Properties of Participating Media Using Lorenz-Mie Theory
,”
ACM Trans. Graph.
,
26
(
3
), p.
60
.10.1145/1276377.1276452
2.
Howell
,
J. R.
, and
Perlmutter
,
M.
,
1964
, “
Monte Carlo Solution of Thermal Transfer Through Radiant Media Between Gray Walls
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
86
(
1
), pp.
116
122
.10.1115/1.3687044
3.
Li
,
X.
,
Peoples
,
J.
,
Yao
,
P.
, and
Ruan
,
X.
,
2021
, “
Ultra-White BaSO4 Paint and Film With Remarkable Radiative Cooling Performance
,”
ACS Appl. Mater. Interfaces
,
13
(
18
), pp.
21733
21739
.10.1021/acsami.1c02368
4.
Peoples
,
J.
,
Li
,
X.
,
Lv
,
Y.
,
Qiu
,
J.
,
Huang
,
Z.
, and
Ruan
,
X.
,
2019
, “
A Strategy of Hierarchical Particle Sizes in Nanoparticle Composite for Enhancing Solar Reflection
,”
Int. J. Heat Mass Transfer
,
131
, pp.
487
494
.10.1016/j.ijheatmasstransfer.2018.11.059
5.
Vuolo
,
M.
,
Giraudo
,
M.
,
Musenich
,
R.
,
Calvelli
,
V.
,
Ambroglini
,
F.
,
Burger
,
W. J.
, and
Battiston
,
R.
,
2016
, “
Monte Carlo Simulations for the Space Radiation Superconducting Shield Project (SR2S)
,”
Life Sci. Space Res.
,
8
, pp.
22
29
.10.1016/j.lssr.2015.12.003
6.
Prahl
,
S. A.
,
1989
, “
A Monte Carlo Model of Light Propagation in Tissue
,”
Proc. SPIE
10305
, p.
1030509
.10.1117/12.2283590
7.
Wang
,
L.
,
Jacques
,
S. L.
, and
Zheng
,
L.
,
1995
, “
MCML-Monte Carlo Modeling of Light Transport in Multi-Layered Tissues
,”
Comput. Methods Programs Biomed.
,
47
(
2
), pp.
131
146
.10.1016/0169-2607(95)01640-F
8.
Hollow
,
J. R.
,
1998
, “
The Monte Carlo Method in Radiative Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
120
(
3
), pp.
547
560
.10.1115/1.2824310
9.
Alerstam
,
E.
,
Svensson
,
T.
, and
Andersson-Engels
,
S.
,
2008
, “
Parallel Computing With Graphics Processing Units for High-Speed Monte Carlo Simulation of Photon Migration
,”
J. Biomed. Opt.
,
13
(
6
), p.
060504
.10.1117/1.3041496
10.
Botu
,
V.
, and
Ramprasad
,
R.
,
2015
, “
Adaptive Machine Learning Framework to Accelerate Ab Initio Molecular Dynamics
,”
Int. J. Quantum Chem.
,
115
, pp.
1074
1083
.10.1002/qua.24836
11.
Maulik
,
R.
,
San
,
O.
,
Rasheed
,
A.
, and
Vedula
,
P.
,
2019
, “
Subgrid Modelling for Two-Dimensional Turbulence Using Neural Networks
,”
J. Fluid Mech.
,
858
, pp.
122
144
.10.1017/jfm.2018.770
12.
Chowdhury
,
P. R.
, and
Ruan
,
X.
,
2022
, “
Unexpected Thermal Conductivity Enhancement in Aperiodic Superlattices Discovered Using Active Machine Learning
,”
NPJ Comput. Mater
,
8
(
12
), p.
12
.10.1038/s41524-022-00701-1
13.
Wei
,
H.
,
Bao
,
H.
, and
Ruan
,
X.
,
2020
, “
Machine Learning Prediction of Thermal Transport in Porous Media With Physics-Based Descriptors
,”
Int. J. Heat Mass Transfer
,
160
, p.
120176
.10.1016/j.ijheatmasstransfer.2020.120176
14.
Wei
,
H.
,
Bao
,
H.
, and
Ruan
,
X.
,
2022
, “
Perspective: Predicting and Optimizing Thermal Transport Properties With Machine Learning Methods
,”
Energy AI
,
8
, p.
1000153
.10.1016/j.egyai.2022.100153
15.
Peng
,
Z.
,
Shan
,
H.
,
Liu
,
T.
,
Pei
,
X.
,
Wang
,
G.
, and
Xu
,
X. G.
,
2019
, “
A Denoising Convolutional Neural Network to Accelerate Monte Carlo Radiation Transport Simulations: A Proof of Principle With Patient Dose From X-Ray CT Imaging
,”
IEEE Access
,
7
, pp.
76680
76689
.10.1109/ACCESS.2019.2921013
16.
Hokr
,
B. H.
, and
Bixler
,
J. N.
,
2021
, “
Machine Learning Estimation of Tissue Optical Properties
,”
Sci. Rep.
,
11
, p.
6561
.10.1038/s41598-021-85994-w
17.
Lee
,
M. S.
,
Hwang
,
D.
,
Kim
,
J. H.
, and
Lee
,
J. S.
,
2019
, “
Deep-Dose: A Voxel Dose Estimation Method Using Deep Convolutional Neural Network for Personalized Internal Dosimetry
,”
Sci. Rep.
,
9
(
1
), p.
10308
.10.1038/s41598-019-46620-y
18.
Keal
,
J.
,
Santos
,
A.
, and
Douglass
,
M.
,
2021
, “
Radiation Dose Calculation in 3D Heterogeneous Media Using Artificial Neural Networks
,”
Med. Phys.
,
48
(
5
), pp.
2636
2645
.10.1002/mp.14780
19.
Huang
,
Z.
, and
Ruan
,
X.
,
2017
, “
Nanoparticle Embedded Double-Layer Coating for Daytime Radiative Cooling
,”
Int. J. Heat Mass Transfer
,
104
, pp.
890
896
.10.1016/j.ijheatmasstransfer.2016.08.009
20.
Bohren
,
C. F.
, and
Huffman
,
D. R.
,
2008
,
Absorbing and Scattering of Light by Small Particles
,
Wiley
, Weinheim, Germany.
21.
Modest
,
M. H.
, and
Azad
,
F. H.
,
1980
, “
The Influence and Treatment of Mie-Anisotropic Scattering in Radiative Heat Transfer
,”
ASME J. Heat Mass Transfer-Trans. ASME
,
102
(
1
), pp.
92
98
.10.1115/1.3244255
22.
Pedrotti
,
F. L.
,
Pedrotti
,
L. M.
, and
Pedrotti
,
L. S.
,
2017
,
Introduction to Optics
,
Cambridge University Press
, Cambridge, UK..
23.
ASTM G173-03
,
2020
, “
Standard Tables for Reference Solar Spectral Irradiances: Direct Normal and Hemispherical on 37° Tilted Surface
,” Book of Standards, Vol. 14.04.
24.
Sharma
,
S.
,
Sharma
,
S.
, and
Athaiya
,
A.
,
2020
, “
Activation Functions in Neural Networks
,”
Int. J. Appl. Sci. Technol
,
4
(
12
), pp.
310
316
.10.33564/IJEAST.2020.v04i12.054
25.
Kingma
,
D. P.
, and
Ba
,
J.
,
2014
, “
Adam: A Method for Stochastic Gradient Descent
,”
arXiv:1412.6980
.10.48550/arXiv.1412.6980
26.
Sola
,
J.
, and
Sevilla
,
J.
,
1997
, “
Importance of Input Data Normalization for the Application of Neural Networks to Complex Industrial Problems
,”
IEEE Trans. Nucl. Sci.
,
44
(
3
), pp.
1464
1468
.10.1109/23.589532
27.
Kim
,
D.
,
1999
, “
Normalization Methods for Input and Output Vectors in Backpropagation Neural Networks
,”
Int. J. Comput. Math.
,
71
(
2
), pp.
161
171
.10.1080/00207169908804800
You do not currently have access to this content.