Abstract

In this article, we experimentally probe the vapor-mediated interaction behavior of evaporating sessile and pendant droplets in an interacting droplet (ID) system. For this purpose, a pendant droplet was introduced in the vapor diffusion domain of a sessile droplet and both were allowed to evaporate simultaneously. The evaporation dynamics were monitored using optical imaging techniques for varied separation (both horizontal and vertical) distances between them. Our observations reveal curtailed mass transfer rate from both the droplets although the evolution of droplet morphology (such as pendant droplet radius, contact radius, and contact angle of sessile droplet) at different stages of evaporation remain similar. The evaporative fluxes from these two droplets interact with one another and thereby reduce the diffusive mobility of vapor molecules in the liquid–vapor interface of both. This condition suppresses the diffusion mechanism and thereby impedes the evaporation rate. We show that the evaporation behavior for two droplets in an interacting droplet system is solely dictated by an effective external vapor concentration depending on the problem geometry. Therefore, to characterize the vapor diffusion domain we hypothesize a vapor front enfolding both the droplets and put forward a theoretical model by applying conservation of mass across it. We also propose a relationship to show the variation of the effective external vapor concentration with the relative separation distance between the droplets. The predictions from theoretical models are found to be in good agreement with our detailed experimental observations.

References

1.
Panão
,
M. R.
, and
Moreira
,
A. L.
,
2009
, “
Intermittent Spray Cooling: A New Technology for Controlling Surface Temperature
,”
Int. J. Heat Fluid Flow
,
30
(
1
), pp.
117
130
.10.1016/j.ijheatfluidflow.2008.10.005
2.
Ogihara
,
H.
,
Xie
,
J.
,
Okagaki
,
J.
, and
Saji
,
T.
,
2012
, “
Simple Method for Preparing Superhydrophobic Paper: Spray-Deposited Hydrophobic Silica Nanoparticle Coatings Exhibit High Water-Repellency and Transparency
,”
Langmuir
,
28
(
10
), pp.
4605
4608
.10.1021/la204492q
3.
Murakami
,
S.
,
2006
, “
A Proposal for a New Forest Canopy Interception Mechanism: Splash Droplet Evaporation
,”
J. Hydrol.
,
319
(
1–4
), pp.
72
82
.10.1016/j.jhydrol.2005.07.002
4.
Park
,
J.
, and
Moon
,
J.
,
2006
, “
Control of Colloidal Particle Deposit Patterns Within Picoliter Droplets Ejected by Ink-Jet Printing
,”
Langmuir
,
22
(
8
), pp.
3506
3513
.10.1021/la053450j
5.
Feng
,
W.
,
Ueda
,
E.
, and
Levkin
,
P. A.
,
2018
, “
Droplet Microarrays: From Surface Patterning to High‐Throughput Applications
,”
Adv. Mater.
,
30
(
20
), p.
1706111
.10.1002/adma.201706111
6.
Kim
,
J.
,
2007
, “
Spray Cooling Heat Transfer: The State of the Art
,”
Int. J. Heat Fluid Flow
,
28
(
4
), pp.
753
767
.10.1016/j.ijheatfluidflow.2006.09.003
7.
Tardif
,
R.
, and
Rasmussen
,
R. M.
,
2010
, “
Evaporation of Non Equilibrium Raindrops as a Fog Formation Mechanism
,”
J. Atmos. Sci.
,
67
(
2
), pp.
345
364
.10.1175/2009JAS3149.1
8.
Ucar
,
I. O.
, and
Erbil
,
H. Y.
,
2012
, “
Use of Diffusion Controlled Drop Evaporation Equations for Dropwise Condensation During Dew Formation and Effect of Neighboring Droplets
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
411
, pp.
60
68
.10.1016/j.colsurfa.2012.07.002
9.
Erbil
,
H. Y.
,
2012
, “
Evaporation of Pure Liquid Sessile and Spherical Suspended Drops: A Review
,”
Adv. Colloid Interface Sci.
,
170
(
1–2
), pp.
67
86
.10.1016/j.cis.2011.12.006
10.
Lee
,
S.
,
Kim
,
D. I.
,
Kim
,
Y. Y.
,
Park
,
S. E.
,
Choi
,
G.
,
Kim
,
Y.
, and
Kim
,
H. J.
,
2017
, “
Droplet Evaporation Characteristics on Transparent Heaters With Different Wettabilities
,”
RSC Adv.
,
7
(
72
), pp.
45274
45279
.10.1039/C7RA08888D
11.
[
Sefiane
,
K.
,
2010
, “
On the Formation of Regular Patterns From Drying Droplets and Their Potential Use for Bio-Medical Applications
,”
J. Bionic Eng.
,
7
(
S4
), pp.
S82
S93
.10.1016/S1672-6529(09)60221-3
12.
Wu
,
A.
,
Yu
,
L.
,
Li
,
Z.
,
Yang
,
H.
, and
Wang
,
E.
,
2004
, “
Atomic Force Microscope Investigation of Large-Circle DNA Molecules
,”
Anal. Biochem.
,
325
(
2
), pp.
293
300
.10.1016/j.ab.2003.11.005
13.
Jing
,
J.
,
Reed
,
J.
,
Huang
,
J.
,
Hu
,
X.
,
Clarke
,
V.
,
Edington
,
J.
,
Housman
,
D.
, et al.,
1998
, “
Automated High Resolution Optical Mapping Using Arrayed, Fluid-Fixed DNA Molecules
,”
Proc. Natl. Acad. Sci.
,
95
(
14
), pp.
8046
8051
.10.1073/pnas.95.14.8046
14.
Anna
,
S. L.
,
Bontoux
,
N.
, and
Stone
,
H. A.
,
2003
, “
Formation of Dispersions Using “Flow Focusing” in Microchannels
,”
Appl. Phys. Lett.
,
82
(
3
), pp.
364
366
.10.1063/1.1537519
15.
Chiu
,
D. T.
,
Lorenz
,
R. M.
, and
Jeffries
,
G. D.
,
2009
, “
Droplets for Ultrasmall-Volume Analysis
,”
Anal Chem.
,
81
(
13
), pp.
5111
5118
.10.1021/ac900306q
16.
Nisisako
,
T.
, and
Torii
,
T.
,
2008
, “
Microfluidic Large-Scale Integration on a Chip for Mass Production of Monodisperse Droplets and Particles
,”
Lab Chip
,
8
(
2
), pp.
287
293
.10.1039/B713141K
17.
Zhong
,
Q.
,
Bhattacharya
,
S.
,
Kotsopoulos
,
S.
,
Olson
,
J.
,
Taly
,
V.
,
Griffiths
,
A. D.
,
Link
,
D. R.
, and
Larson
,
J. W.
,
2011
, “
Multiplex Digital PCR: Breaking the One Target per Color Barrier of Quantitative PCR
,”
Lab Chip
,
11
(
13
), pp.
2167
2174
.10.1039/c1lc20126c
18.
Song
,
H.
,
Tice
,
J. D.
, and
Ismagilov
,
R. F.
,
2003
, “
A Microfluidic System for Controlling Reaction Networks in Time
,”
Angew. Chem.
,
115
(
7
), pp.
792
796
.10.1002/ange.200390172
19.
Pompano
,
R. R.
,
Liu
,
W.
,
Du
,
W.
, and
Ismagilov
,
R. F.
,
2011
, “
Microfluidics Using Spatially Defined Arrays of Droplets in One, Two, and Three Dimensions
,”
Annu. Rev. Anal. Chem.
,
4
(
1
), pp.
59
81
.10.1146/annurev.anchem.012809.102303
20.
Picknett
,
R. G.
, and
Bexon
,
R.
,
1977
, “
The Evaporation of Sessile or Pendant Drops in Still Air
,”
J. Colloid Interface Sci.
,
61
(
2
), pp.
336
350
.10.1016/0021-9797(77)90396-4
21.
Abramzon
,
B.
, and
Sirignano
,
W. A.
,
1989
, “
Droplet Vaporization Model for Spray Combustion Calculations
,”
Int. J. Heat Mass Transfer
,
32
(
9
), pp.
1605
1618
.10.1016/0017-9310(89)90043-4
22.
Nomura
,
H.
,
Ujiie
,
Y.
,
Rath
,
H. J.
,
Sato
,
J. I.
, and
Kono
,
M.
,
1996
, “
Experimental Study on High-Pressure Droplet Evaporation Using Microgravity Conditions
,”
Symp. (Int.) Combust.
,
26
(
1
), pp.
1267
1273
.10.1016/S0082-0784(96)80344-4
23.
Harikrishnan
,
A. R.
, and
Dhar
,
P.
,
2018
, “
Optical Thermogeneration Induced Enhanced Evaporation Kinetics in Pendant Nanofluid Droplets
,”
Int. J. Heat Mass Transfer
,
118
, pp.
1169
1179
.10.1016/j.ijheatmasstransfer.2017.11.092
24.
Jaiswal
,
V.
,
Harikrishnan
,
A. R.
,
Khurana
,
G.
, and
Dhar
,
P.
,
2018
, “
Ionic Solubility and Solutal Advection Governed Augmented Evaporation Kinetics of Salt Solution Pendant Droplets
,”
Phys. Fluids
,
30
(
1
), p.
012113
.10.1063/1.5013356
25.
Chattopadhyay
,
A.
,
Dwivedi
,
R. K.
,
Harikrishnan
,
A. R.
, and
Dhar
,
P.
,
2020
, “
Ferro-Advection Aided Evaporation Kinetics of Ferrofluid Droplets in Magnetic Field Ambience
,”
Phys. Fluids
,
32
(
8
), p.
082001
.10.1063/5.0018815
26.
Jaiswal
,
V.
,
Singh
,
S.
,
Harikrishnan
,
A. R.
, and
Dhar
,
P.
,
2020
, “
Competitive Electrohydrodynamic and Electrosolutal Advection Arrests Evaporation Kinetics of Droplets
,”
Langmuir
,
36
(
30
), pp.
8971
8982
.10.1021/acs.langmuir.0c01619
27.
Jaiswal
,
V.
, and
Dhar
,
P.
,
2019
, “
Interplay of Electro-Thermo-Solutal Advection and Internal Electrohydrodynamics Governed Enhanced Evaporation of Droplets
,”
Proc. R. Soc. A
,
475
(
2225
), p.
20190046
.10.1098/rspa.2019.0046
28.
Radhakrishnan
,
S.
,
Anand
,
T. N. C.
, and
Bakshi
,
S.
,
2019
, “
Evaporation-Induced Flow Around a Droplet in Different Gases
,”
Phys. Fluids
,
31
(
9
), p.
092109
.10.1063/1.5109048
29.
Radhakrishnan
,
S.
,
Srivathsan
,
N.
,
Anand
,
T. N. C.
, and
Bakshi
,
S.
,
2019
, “
Influence of the Suspender in Evaporating Pendant Droplets
,”
Int. J. Therm. Sci.
,
140
, pp.
368
376
.10.1016/j.ijthermalsci.2019.03.004
30.
Hu
,
H.
, and
Larson
,
R. G.
,
2002
, “
Evaporation of a Sessile Droplet on a Substrate
,”
J. Phys. Chem. B
,
106
(
6
), pp.
1334
1344
.10.1021/jp0118322
31.
Popov
,
Y. O.
,
2005
, “
Evaporative Deposition Patterns: Spatial Dimensions of the Deposit
,”
Phys. Rev. E
,
71
(
3
), p.
036313
.10.1103/PhysRevE.71.036313
32.
Nguyen
,
T. A.
,
Nguyen
,
A. V.
,
Hampton
,
M. A.
,
Xu
,
Z. P.
,
Huang
,
L.
, and
Rudolph
,
V.
,
2012
, “
Theoretical and Experimental Analysis of Droplet Evaporation on Solid Surfaces
,”
Chem. Eng. Sci.
,
69
(
1
), pp.
522
529
.10.1016/j.ces.2011.11.009
33.
Bormashenko
,
E.
,
Musin
,
A.
, and
Zinigrad
,
M.
,
2011
, “
Evaporation of Droplets on Strongly and Weakly Pinning Surfaces and Dynamics of the Triple Line
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
385
(
1–3
), pp.
235
240
.10.1016/j.colsurfa.2011.06.016
34.
Sefiane
,
K.
,
Wilson
,
S. K.
,
David
,
S.
,
Dunn
,
G. J.
, and
Duffy
,
B. R.
,
2009
, “
On the Effect of the Atmosphere on the Evaporation of Sessile Droplets of Water
,”
Phys. Fluids
,
21
(
6
), p.
062101
.10.1063/1.3131062
35.
Dunn
,
G. J.
,
Wilson
,
S. K.
,
Duffy
,
B. R.
,
David
,
S.
, and
Sefiane
,
K.
,
2009
, “
The Strong Influence of Substrate Conductivity on Droplet Evaporation
,”
J. Fluid Mech.
,
623
, pp.
329
351
.10.1017/S0022112008005004
36.
Paul
,
A.
,
Khurana
,
G.
, and
Dhar
,
P.
,
2021
, “
Substrate Concavity Influenced Evaporation Mechanisms of Sessile Droplets
,”
Phys. Fluids
,
33
(
8
), p.
082003
.10.1063/5.0059878
37.
Paul
,
A.
, and
Dhar
,
P.
,
2021
, “
Evaporation Kinetics of Sessile Droplets Morphed by Substrate Curvature
,”
Phys. Fluids
,
33
(
12
), p.
122010
.10.1063/5.0074882
38.
Dhar
,
P.
,
Dwivedi
,
R. K.
, and
Harikrishnan
,
A. R.
,
2020
, “
Surface Declination Governed Asymmetric Sessile Droplet Evaporation
,”
Phys. Fluids
,
32
(
11
), p.
112010
.10.1063/5.0025644
39.
Kaushal
,
A.
,
Mehandia
,
V.
, and
Dhar
,
P.
,
2021
, “
Ferrohydrodynamics Governed Evaporation Phenomenology of Sessile Droplets
,”
Phys. Fluids
,
33
(
2
), p.
022006
.10.1063/5.0040712
40.
Kaushal
,
A.
,
Jaiswal
,
V.
,
Mehandia
,
V.
, and
Dhar
,
P.
,
2020
, “
Soluto-Thermo-Hydrodynamics Influenced Evaporation Kinetics of Saline Sessile Droplets
,”
Eur. J. Mech.-B/Fluids
,
83
, pp.
130
140
.10.1016/j.euromechflu.2020.04.014
41.
Kaushal
,
A.
,
Jaiswal
,
V.
,
Mehandia
,
V.
, and
Dhar
,
P.
,
2022
, “
Competing Thermal and Solutal Advection Decelerates Droplet Evaporation on Heated Surfaces
,”
Eur. J. Mech.-B/Fluids
,
91
, pp.
129
140
.10.1016/j.euromechflu.2021.10.003
42.
Hegseth
,
J. J.
,
Rashidnia
,
N.
, and
Chai
,
A.
,
1996
, “
Natural Convection in Droplet Evaporation
,”
Phys. Review E
,
54
(
2
), pp.
1640
1644
.10.1103/PhysRevE.54.1640
43.
Dehaeck
,
S.
,
Rednikov
,
A.
, and
Colinet
,
P.
,
2014
, “
Vapor-Based Interferometric Measurement of Local Evaporation Rate and Interfacial Temperature of Evaporating Droplets
,”
Langmuir
,
30
(
8
), pp.
2002
2008
.10.1021/la404999z
44.
Carle
,
F.
,
Sobac
,
B.
, and
Brutin
,
D.
,
2013
, “
Experimental Evidence of the Atmospheric Convective Transport Contribution to Sessile Droplet Evaporation
,”
Appl. Phys. Lett.
,
102
(
6
), p.
061603
.10.1063/1.4792058
45.
Somasundaram
,
S.
,
Anand
,
T. N. C.
, and
Bakshi
,
S.
,
2015
, “
Evaporation-Induced Flow Around a Pendant Droplet and Its Influence on Evaporation
,”
Phys. Fluids
,
27
(
11
), p.
112105
.10.1063/1.4935355
46.
Dhar
,
P.
,
Khurana
,
G.
,
Anilakkad Raman
,
H.
, and
Jaiswal
,
V.
,
2019
, “
Superhydrophobic Surface Curvature Dependence of Internal Advection Dynamics Within Sessile Droplets
,”
Langmuir
,
35
(
6
), pp.
2326
2333
.10.1021/acs.langmuir.8b03932
47.
Guena
,
G.
,
Poulard
,
C.
,
Voue
,
M.
,
De Coninck
,
J.
, and
Cazabat
,
A. M.
,
2006
, “
Evaporation of Sessile Liquid Droplets
,”
Colloids Surf. A: Physicochem. Eng. Aspects
,
291
(
1–3
), pp.
191
196
.10.1016/j.colsurfa.2006.07.021
48.
Laghezza
,
G.
,
Dietrich
,
E.
,
Yeomans
,
J. M.
,
Ledesma-Aguilar
,
R.
,
Kooij
,
E. S.
,
Zandvliet
,
H. J.
, and
Lohse
,
D.
,
2016
, “
Collective and Convective Effects Compete in Patterns of Dissolving Surface Droplets
,”
Soft Matter
,
12
(
26
), pp.
5787
5796
.10.1039/C6SM00767H
49.
Shaikeea
,
A. J. D.
, and
Basu
,
S.
,
2016
, “
Insight Into the Evaporation Dynamics of a Pair of Sessile Droplets on a Hydrophobic Substrate
,”
Langmuir
,
32
(
5
), pp.
1309
1318
.10.1021/acs.langmuir.5b04570
50.
Hatte
,
S.
,
Pandey
,
K.
,
Pandey
,
K.
,
Chakraborty
,
S.
, and
Basu
,
S.
,
2019
, “
Universal Evaporation Dynamics of Ordered Arrays of Sessile Droplets
,”
J. Fluid Mech.
,
866
, pp.
61
81
.10.1017/jfm.2019.105
51.
Shanahan
,
M. E. R.
,
Sefiane
,
K.
, and
Moffat
,
J. R.
,
2011
, “
Dependence of Volatile Droplet Lifetime on the Hydrophobicity of the Substrate
,”
Langmuir
,
27
(
8
), pp.
4572
4577
.10.1021/la200437s
You do not currently have access to this content.