Abstract

There exist some problems such as flow instability and critical heat flux (CHF) caused by the local dryout phenomenon, which is an obstacle to the application of microchannel flow boiling heat sink. Utilizing self-rewetting fluid is one of the promising ways to minimize the dryout area, thus increasing the heat transfer coefficient and CHF. To investigate the heat transfer performance of self-rewetting fluid in microchannel flow boiling, a numerical investigation is carried out in this study using the volume of fluid (VOF) method, phase-change model, and continuum surface force model with surface tension versus temperature. A three-dimensional numerical investigation of bubble growth and merger is carried out with water and 0.2 wt % heptanol solution. The single bubble growing cases, two x-direction/y-direction bubbles' merging cases, and three bubbles' merging cases are conducted. Since the bubbles never detach the heated walls, the dryout area and regions nearby the contact line with thin liquid film dominated the heat transfer process during the bubbles' growth and merger. The self-rewetting fluid can minimize the local dryout area and achieve larger thin liquid film area around the contact line due to the Marangoni effect and thermocapillary force, thus resulting in higher wall heat flux. The two x-direction bubbles' merging case performed best for heat transfer in the microchannel, in which self-rewetting fluid achieves heat transfer enhancement for over 50%.

References

1.
Karayiannis
,
T. G.
, and
Mahmoud
,
M. M.
,
2017
, “
Flow Boiling in Microchannels: Fundamentals and Applications
,”
Appl. Therm. Eng.
,
115
, pp.
1372
1397
.10.1016/j.applthermaleng.2016.08.063
2.
Krishnan
,
S.
,
Garimella
,
S. V.
,
Chrysler
,
G. M.
, and
Mahajan
,
R. V.
,
2007
, “
Towards a Thermal Moore's Law
,”
IEEE Trans. Adv. Packag.
,
30
(
3
), pp.
462
474
.10.1109/TADVP.2007.898517
3.
Radwan
,
A.
,
Ookawara
,
S.
, and
Ahmed
,
M.
,
2019
, “
Thermal Management of Concentrator Photovoltaic Systems Using Two-Phase Flow Boiling in Double-Layer Microchannel Heat Sinks
,”
Appl. Energy
,
241
, pp.
404
419
.10.1016/j.apenergy.2019.03.017
4.
Ortegon
,
J. A. A.
,
Souza
,
R. R.
,
Silva
,
J. B. C.
, and
Cardoso
,
E. M.
,
2019
, “
Analytical, Experimental, and Numerical Analysis of a Microchannel Cooling System for High-Concentration Photovoltaic Cells
,”
J. Braz. Soc. Mech. Sci. Eng.
,
41
(
6
), p.
255
.10.1007/s40430-019-1754-3
5.
Sussman
,
M.
,
Smereka
,
P.
, and
Osher
,
S.
,
1994
, “
A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow
,”
J. Comput. Phys.
,
114
(
1
), pp.
146
159
.10.1006/jcph.1994.1155
6.
Mukherjee
,
A.
,
Kandlikar
,
S. G.
, and
Edel
,
Z. J.
,
2011
, “
Numerical Study of Bubble Growth and Wall Heat Transfer During Flow Boiling in a Microchannel
,”
Int. J. Heat Mass Transfer
,
54
(
15–16
), pp.
3702
3718
.10.1016/j.ijheatmasstransfer.2011.01.030
7.
Mukherjee
,
A.
,
2009
, “
Contribution of Thin-Film Evaporation During Flow Boiling Inside Microchannels
,”
Int. J. Therm. Sci.
,
48
(
11
), pp.
2025
2035
.10.1016/j.ijthermalsci.2009.03.006
8.
Ling
,
K.
,
Son
,
G.
,
Sun
,
D.-L.
, and
Tao
,
W.-Q.
,
2015
, “
Three Dimensional Numerical Simulation on Bubble Growth and Merger in Microchannel Boiling Flow
,”
Int. J. Therm. Sci.
,
98
, pp.
135
147
.10.1016/j.ijthermalsci.2015.06.019
9.
Hirt
,
C. W.
, and
Nichols
,
B. D.
,
1981
, “
Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries
,”
J. Comput. Phys.
,
39
(
1
), pp.
201
225
.10.1016/0021-9991(81)90145-5
10.
Guo
,
K.
,
Li
,
H.
,
Feng
,
Y.
,
Zhao
,
J.
, and
Wang
,
T.
,
2019
, “
Numerical Investigation on Single Bubble and Multiple Bubbles Growth and Heat Transfer During Flow Boiling in a Microchannel Using the VOSET Method
,”
Microgravity Sci. Technol.
,
31
(
4
), pp.
381
393
.10.1007/s12217-019-9697-y
11.
Magnini
,
M.
, and
Thome
,
J. R.
,
2016
, “
Computational Study of Saturated Flow Boiling Within a Microchannel in the Slug Flow Regime
,”
ASME J. Heat Transfer
,
138
(
2
), p.
021502
.10.1115/1.4031234
12.
Katiyar
,
G.
,
Karagadde
,
S.
,
Saha
,
S. K.
, and
Sharma
,
A.
,
2016
, “
Numerical Modelling of Bubble Growth in Microchannel Using Level Set Method
,”
Int. J. Heat Mass Transfer
,
101
, pp.
719
732
.10.1016/j.ijheatmasstransfer.2016.05.029
13.
Liu
,
Q.
, and
Palm
,
B.
,
2016
, “
Numerical Study of Bubbles Rising and Merging During Convective Boiling in Micro-Channels
,”
Appl. Therm. Eng.
,
99
, pp.
1141
1151
.10.1016/j.applthermaleng.2016.01.116
14.
Liu
,
Q.
,
Wang
,
W.
, and
Palm
,
B.
,
2017
, “
Numerical Study of the Interactions and Merge of Multiple Bubbles During Convective Boiling in Micro Channels
,”
Int. Commun. Heat Mass Transfer
,
80
, pp.
10
17
.10.1016/j.icheatmasstransfer.2016.11.009
15.
Lorenzini
,
D.
, and
Joshi
,
Y. K.
,
2018
, “
Computational Fluid Dynamics Modeling of Flow Boiling in Microchannels With Nonuniform Heat Flux
,”
ASME J. Heat Transfer
,
140
(
1
), p.
011501
.10.1115/1.4037343
16.
Kandlikar
,
S. G.
,
2010
, “
Scale Effects on Flow Boiling Heat Transfer in Microchannels: A Fundamental Perspective
,”
Int. J. Therm. Sci.
,
49
(
7
), pp.
1073
1085
.10.1016/j.ijthermalsci.2009.12.016
17.
Sasmal
,
G. P.
, and
Hochstein
,
J. I.
,
1994
, “
Marangoni Convection With a Curved and Deforming Free Surface in a Cavity
,”
ASME J. Fluids Eng.
,
116
(
3
), pp.
577
582
.10.1115/1.2910316
18.
Li
,
S.
,
Chen
,
R.
,
Zhu
,
X.
, and
Liao
,
Q.
,
2016
, “
Numerical Investigation of the Marangoni Convection During the Liquid Column Evaporation in Microchannels Caused by IR Laser Heating
,”
Int. J. Heat Mass Transfer
,
101
, pp.
970
980
.10.1016/j.ijheatmasstransfer.2016.05.119
19.
Scriven
,
L. E.
, and
Sternling
,
C. V.
,
1960
, “
The Marangoni Effects
,”
Nature
,
187
(
4733
), pp.
186
188
.10.1038/187186a0
20.
Mcgrew
,
J. L.
,
Bamford
,
F. L.
, and
Rehm
,
T. R.
,
1966
, “
Marangoni Flow: An Additional Mechanism in Boiling Heat Transfer
,”
Science
,
153
(
3740
), pp.
1106
1107
.10.1126/science.153.3740.1106
21.
Abe
,
Y.
,
2006
, “
Self-Rewetting Fluids: Beneficial Aqueous Solutions
,”
Ann. N. Y. Acad. Sci.
,
1077
(
1
), pp.
650
667
.10.1196/annals.1362.026
22.
Abe
,
Y.
,
Iwasaki
,
A.
, and
Tanaka
,
K.
,
2004
, “
Microgravity Experiments on Phase Change of Self-Rewetting Fluids
,”
Ann. N. Y. Acad. Sci.
,
1027
(
1
), pp.
269
285
.10.1196/annals.1324.022
23.
Abe
,
Y.
,
Iwaski
,
A.
, and
Tanaka
,
K.
,
2005
, “
Thermal Management With Self-Rewetting Fluids
,”
Microgravity Sci. Technol.
,
16
(
1–4
), pp.
148
152
.10.1007/BF02945966
24.
Hu
,
Y.
,
Zhang
,
S.
,
Li
,
X.
, and
Wang
,
S.
,
2015
, “
Heat Transfer Enhancement of Subcooled Pool Boiling With Self-Rewetting Fluid
,”
Int. J. Heat Mass Transfer
,
83
, pp.
64
68
.10.1016/j.ijheatmasstransfer.2014.11.081
25.
Nishiguchi
,
S.
,
Ono
,
N.
, and
Shoji
,
M.
,
2008
, “
Critical Heat Flux of Butanol Aqueous Solution
,”
ASME
Paper No. ICNMM2008-62378.10.1115/ICNMM2008-62378
26.
Nishiguchi
,
S.
, and
Shoji
,
M.
,
2009
, “
A Study of Critical Heat Flux of Butanol Aqueous Solution
,”
ASME
Paper No. ICNMM2009-82107.10.1115/ICNMM2009-82107
27.
Sahu
,
R. P.
,
Sinha-Ray
,
S.
,
Sinha-Ray
,
S.
, and
Yarin
,
A. L.
,
2016
, “
Pool Boiling of Novec 7300 and Self-Rewetting Fluids on Electrically-Assisted Supersonically Solution-Blown, Copper-Plated Nanofibers
,”
Int. J. Heat Mass Transfer
,
95
, pp.
83
93
.10.1016/j.ijheatmasstransfer.2015.11.094
28.
Zhou
,
L.
,
Wang
,
Z.
,
Du
,
X.
, and
Yang
,
Y.
,
2015
, “
Boiling Characteristics of Water and Self-Rewetting Fluids in Packed Bed of Spherical Glass Beads
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
537
544
.10.1016/j.expthermflusci.2015.06.016
29.
Cecere
,
A.
,
Paola
,
R. D.
,
Savino
,
R.
,
Abe
,
Y.
,
Carotenuto
,
L.
, and
Vaerenbergh
,
S. V.
,
2011
, “
Observation of Marangoni Flow in Ordinary and Self-Rewetting Fluids Using Optical Diagnostic Systems
,”
Eur. Phys. J. Spec. Top.
,
192
(
1
), pp.
109
120
.10.1140/epjst/e2011-01365-7
30.
Francescantonio
,
N. D.
,
Savino
,
R.
, and
Abe
,
Y.
,
2008
, “
New Alcohol Solutions for Heat Pipes: Marangoni Effect and Heat Transfer Enhancement
,”
Int. J. Heat Mass Transfer
,
51
(
25–26
), pp.
6199
6207
.10.1016/j.ijheatmasstransfer.2008.01.040
31.
Savino
,
R.
,
Cecere
,
A.
,
Di Paola
,
R.
,
Abe
,
Y.
,
Castagnolo
,
D.
, and
Fortezza
,
R.
,
2009
, “
Marangoni Heat Pipe: An Experiment on Board MIOsat Italian Microsatellite
,”
Acta Astronaut.
,
65
(
11–12
), pp.
1582
1592
.10.1016/j.actaastro.2009.04.005
32.
Savino
,
R.
,
De Cristofaro
,
D.
, and
Cecere
,
A.
,
2017
, “
Flow Visualization and Analysis of Self-Rewetting Fluids in a Model Heat Pipe
,”
Int. J. Heat Mass Transfer
,
115
, pp.
581
591
.10.1016/j.ijheatmasstransfer.2017.07.090
33.
Ono
,
N.
,
Yoshida
,
T.
,
Shoji
,
M.
, and
Nishiguchi
,
S.
,
2007
, “
The Aqueous Solutions With Nonlinear Surface Energy and Their Application to Flow Boiling in a Mini/Micro Tube
,”
ASME
Paper No. ICNMM2007-30166.10.1115/ICNMM2007-30166
34.
Mamalis
,
D.
,
Koutsos
,
V.
, and
Sefiane
,
K.
,
2017
, “
Bubble Rise in a Non-Isothermal Self-Rewetting Fluid and the Role of Thermocapillarity
,”
Int. J. Therm. Sci.
,
117
, pp.
146
162
.10.1016/j.ijthermalsci.2017.03.023
35.
Sitar
,
A.
, and
Golobic
,
I.
,
2015
, “
Heat Transfer Enhancement of Self-Rewetting Aqueous n-Butanol Solutions Boiling in Microchannels
,”
Int. J. Heat Mass Transfer
,
81
, pp.
198
206
.10.1016/j.ijheatmasstransfer.2014.10.034
36.
Sitar
,
A.
,
Zupančič
,
M.
,
Crivellari
,
M.
, and
Golobič
,
I.
,
2017
, “
The Onset of Nucleate Boiling of Self-Rewetting Fluids in Microchannels
,”
IOP Conf. Ser.: Earth Environ. Sci.
,
93
, p.
012018
.10.1088/1755-1315/93/1/012018
37.
Zhang
,
J.
, and
Li
,
W.
,
2016
, “
Investigation of Hydrodynamic and Heat Transfer Characteristics of Gas–Liquid Taylor Flow in Vertical Capillaries
,”
Int. Commun. Heat Mass Transfer
,
74
, pp.
1
10
.10.1016/j.icheatmasstransfer.2016.03.003
38.
Zhang
,
J.
,
Fletcher
,
D. F.
, and
Li
,
W.
,
2016
, “
Heat Transfer and Pressure Drop Characteristics of Gas–Liquid Taylor Flow in Mini Ducts of Square and Rectangular Cross-Sections
,”
Int. J. Heat Mass Transfer
,
103
, pp.
45
56
.10.1016/j.ijheatmasstransfer.2016.07.007
39.
Luo
,
Y.
,
Zhang
,
J.
,
Li
,
W.
,
Sokolova
,
E.
,
Li
,
Y.
, and
Minkowycz
,
W. J.
,
2017
, “
Numerical Investigation of the Bubble Growth in Horizontal Rectangular Microchannels
,”
Numer. Heat Transfer, Part A
,
71
(
12
), pp.
1175
1188
.10.1080/10407782.2017.1350538
40.
Luo
,
Y.
,
Li
,
J.
,
Zhou
,
K.
,
Zhang
,
J.
, and
Li
,
W.
,
2019
, “
A Numerical Study of Subcooled Flow Boiling in a Manifold Microchannel Heat Sink With Varying Inlet-to-Outlet Width Ratio
,”
Int. J. Heat Mass Transfer
,
139
, pp.
554
563
.10.1016/j.ijheatmasstransfer.2019.05.030
41.
Li
,
W.
,
Luo
,
Y.
,
Zhang
,
J.
, and
Minkowycz
,
W. J.
,
2018
, “
Simulation of Single Bubble Evaporation in a Microchannel in Zero Gravity With Thermocapillary Effect
,”
ASME J. Heat Transfer
,
140
(
11
), p.
112403
.10.1115/1.4040147
42.
Hardt
,
S.
, and
Wondra
,
F.
,
2008
, “
Evaporation Model for Interfacial Flows Based on a Continuum-Field Representation of the Source Terms
,”
J. Comput. Phys.
,
227
(
11
), pp.
5871
5895
.10.1016/j.jcp.2008.02.020
43.
Kunkelmann
,
C.
, and
Stephan
,
P.
,
2009
, “
CFD Simulation of Boiling Flows Using the Volume-of-Fluid Method Within OpenFOAM
,”
Numer. Heat Transfer, Part A
,
56
(
8
), pp.
631
646
.10.1080/10407780903423908
44.
Brackbill
,
J. U.
,
Kothe
,
D. B.
, and
Zemach
,
C.
,
1992
, “
A Continuum Method for Modeling Surface Tension
,”
J. Comput. Phys.
,
100
(
2
), pp.
335
354
.10.1016/0021-9991(92)90240-Y
45.
Hoang
,
D. A.
,
van Steijn
,
V.
,
Portela
,
L. M.
,
Kreutzer
,
M. T.
, and
Kleijn
,
C. R.
,
2013
, “
Benchmark Numerical Simulations of Segmented Two-Phase Flows in Microchannels Using the Volume of Fluid Method
,”
Comput. Fluids
,
86
, pp.
28
36
.10.1016/j.compfluid.2013.06.024
46.
Weller
,
H. G.
,
Tabor
,
G.
,
Jasak
,
H.
, and
Fureby
,
C.
,
1998
, “
A Tensorial Approach to Computational Continuum Mechanics Using Object-Oriented Techniques
,”
Comput. Phys.
,
12
(
6
), pp.
620
631
.10.1063/1.168744
47.
Ferrari
,
A.
,
Magnini
,
M.
, and
Thome
,
J. R.
,
2018
, “
Numerical Analysis of Slug Flow Boiling in Square Microchannels
,”
Int. J. Heat Mass Transfer
,
123
, pp.
928
944
.10.1016/j.ijheatmasstransfer.2018.03.012
48.
Mostafa
,
M.
,
Hitesh
,
B.
,
Shuji
,
E.
, and
Masahiro
,
K.
,
2011
, “
Enhancement of Pool Boiling and Critical Heat Flux in Self-Rewetting Fluids at Above Atmospheric Pressures
,”
ASME
Paper No. AJTEC2011-44593.10.1115/AJTEC2011-44593
You do not currently have access to this content.