Abstract

High-performance computing systems are needed in advanced computing services such as machine learning and artificial intelligence. Consequently, the increase in electron chip density results in high heat fluxes and requires good thermal management to maintain the servers. Spray cooling using liquid offers higher heat transfer rates and is efficient when implemented in electronics cooling. Detailed studies of fundamental mechanisms involved in spray cooling, such as single droplet and multiple droplet interactions are required to enhance the process's knowledge. The present work focuses on studying a train of two FC-72 droplets impinging over a heated surface. Experimental investigation using high-speed photography and infrared thermography is conducted. Simultaneously, numerical simulations using opensource CFD package, OpenFOAM are carried out, emphasizing the significance of contact angle hysteresis. The surface temperature is chosen as a parameter, and different boiling regimes along with dynamic Leidenfrost point for the present impact conditions are identified. Spreading hydrodynamics and heat transfer characteristics of these consecutively impinging droplets till the Leidenfrost temperature are studied and compared.

References

1.
Rein
,
M.
,
1993
, “
Phenomena of Liquid Drop Impact on Solid and Liquid Surfaces
,”
Fluid Dyn. Res.
,
12
(
2
), pp.
61
93
.10.1016/0169-5983(93)90106-K
2.
Yarin
,
A.
,
2006
, “
Drop Impact Dynamics: Splashing, Spreading, Receding, Bouncing
,”
Annu. Rev. Fluid Mech.
,
38
(
1
), pp.
159
192
.10.1146/annurev.fluid.38.050304.092144
3.
Moreira
,
A.
,
Moita
,
A.
, and
Panão
,
M.
,
2010
, “
Advances and Challenges in Explaining Fuel Spray Impingement: How Much of Single Droplet Impact Research is Useful?
,”
Prog. Energy Combust. Sci.
,
36
(
5
), pp.
554
580
.10.1016/j.pecs.2010.01.002
4.
Chandra
,
S.
, and
Avedisian
,
C.
,
1991
, “
On the Collision of a Droplet With a Solid Surface
,”
Proc. R. Soc. Lond. A
,
432
(
1884
), pp.
13
41
.10.1098/rspa.1991.0002
5.
Bernardin
,
J. D.
,
Stebbins
,
C. J.
, and
Mudawar
,
I.
,
1997
, “
Mapping of Impact and Heat Transfer Regimes of Water Drops Impinging on a Polished Surface
,”
Int. J. Heat Mass Transfer
,
40
(
2
), pp.
247
267
.10.1016/0017-9310(96)00119-6
6.
Bernardin
,
J. D.
,
Stebbins
,
C. J.
, and
Mudawar
,
I.
,
1996
, “
Effects of Surface Roughness on Water Droplet Impact History and Heat Transfer Regimes
,”
Int. J. Heat Mass Transfer
,
40
(
1
), pp.
73
88
.10.1016/S0017-9310(96)00067-1
7.
Liang
,
G.
, and
Mudawar
,
I.
,
2017
, “
Review of Drop Impact on Heated Walls
,”
Int. J. Heat Mass Transfer
,
106
, pp.
103
126
.10.1016/j.ijheatmasstransfer.2016.10.031
8.
Avedisian
,
C.
, and
Koplik
,
J.
,
1987
, “
Leidenfrost Boiling of Methanol Droplets on Hot Porous/Ceramic Surfaces
,”
Int. J. Heat Mass Transfer
,
30
(
2
), pp.
379
393
.10.1016/0017-9310(87)90126-8
9.
Harlow
,
F. H.
, and
Shannon
,
J. P.
,
1967
, “
The Splash of a Liquid Drop
,”
J. Appl. Phys.
,
38
(
10
), pp.
3855
3866
.10.1063/1.1709031
10.
Tryggvason
,
G.
,
Bunner
,
B.
,
Esmaeeli
,
A.
,
Juric
,
D.
,
Al-Rawahi
,
N.
,
Tauber
,
W.
,
Han
,
J.
,
Nas
,
S.
, and
Jan
,
Y.-J.
,
2001
, “
A Front-Tracking Method for the Computations of Multiphase Flow
,”
J. Comput. Phys.
,
169
(
2
), pp.
708
759
.10.1006/jcph.2001.6726
11.
Bussmann
,
M.
,
Mostaghimi
,
J.
, and
Chandra
,
S.
,
1999
, “
On a Three-Dimensional Volume Tracking Model of Droplet Impact
,”
Phys. Fluids
,
11
(
6
), pp.
1406
1417
.10.1063/1.870005
12.
Herbert
,
S.
,
Fischer
,
S.
,
Gambaryan-Roisman
,
T.
, and
Stephan
,
P.
,
2013
, “
Local Heat Transfer and Phase Change Phenomena During Single Drop Impingement on a Hot Surface
,”
Int. J. Heat Mass Transfer
,
61
, pp.
605
614
.10.1016/j.ijheatmasstransfer.2013.01.081
13.
Gumulya
,
M.
,
Utikar
,
R. P.
,
Pareek
,
V.
,
Tade
,
M. O.
,
Mitra
,
S.
, and
Evans
,
G. M.
,
2014
, “
Modelling of the Interaction Between a Falling n-Heptane Droplet and Hot Solid Surface
,”
Chem. Eng. Sci.
,
116
, pp.
23
37
.10.1016/j.ces.2014.04.032
14.
Nguyen
,
T.
, and
Avedisian
,
C.
,
1987
, “
Numerical Solution for Film Evaporation of a Spherical Liquid Droplet on an Isothermal and Adiabatic Surface
,”
Int. J. Heat Mass Transfer
,
30
(
7
), pp.
1497
1509
.10.1016/0017-9310(87)90181-5
15.
Šikalo
,
Š.
,
Wilhelm
,
H. D.
,
Roisman
,
I. V.
,
Jakirlić
,
S.
, and
Tropea
,
C.
,
2005
, “
Dynamic Contact Angle of Spreading Droplets: Experiments and Simulations
,”
Phys. Fluids
,
17
(
6
), pp.
062103
061602
.10.1063/1.1928828
16.
Herbert
,
S.
,
Gambaryan-Roisman
,
T.
, and
Stephan
,
P.
,
2013
, “
Influence of the Governing Dimensionless Parameters on Heat Transfer During Single Drop Impingement Onto a Hot Wall
,”
Colloids Surf. A
,
432
, pp.
57
63
.10.1016/j.colsurfa.2013.05.014
17.
Pasandideh-Fard
,
M.
,
Chandra
,
S.
, and
Mostaghimi
,
J.
,
2002
, “
A Three-Dimensional Model of Droplet Impact and Solidification
,”
Int. J. Heat Mass Transfer
,
45
(
11
), pp.
2229
2242
.10.1016/S0017-9310(01)00336-2
18.
Bernardin
,
J. D.
, and
Mudawar
,
I.
,
1997
, “
Film Boiling Heat Transfer of Droplet Streams and Sprays
,”
Int. J. Heat Mass Transfer
,
40
(
11
), pp.
2579
2593
.10.1016/S0017-9310(96)00297-9
19.
Fujimoto
,
H.
,
Tong
,
A. Y.
, and
Takuda
,
H.
,
2008
, “
Interaction Phenomena of Two Water Droplets Successively Impacting Onto a Solid Surface
,”
Int. J. Therm. Sci.
,
47
(
3
), pp.
229
236
.10.1016/j.ijthermalsci.2007.02.006
20.
Breitenbach
,
J.
,
Roisman
,
I. V.
, and
Tropea
,
C.
,
2018
, “
From Drop Impact Physics to Spray Cooling Models: A Critical Review
,”
Exp. Fluids
,
59
(
3
), p.
55
.10.1007/s00348-018-2514-3
21.
Minamikawa
,
T.
,
Fujimoto
,
H.
,
Hama
,
T.
, and
Takuda
,
H.
,
2008
, “
Numerical Simulation of Two Droplets Impinging Successively on a Hot Solid in the Film Boiling Regime
,”
ISIJ Int.
,
48
(
5
), pp.
611
615
.10.2355/isijinternational.48.611
22.
Zhang
,
T.
,
Alvarado
,
J.
,
Muthusamy
,
J. P.
,
Kanjirakat
,
A.
, and
Sadr
,
R.
,
2016
, “
Effects of High Frequency Droplet Train Impingement on Spreading-Splashing Transition, Film Hydrodynamics and Heat Transfer
,”
ASME J. Heat Transfer
,
138
(
2
), p.
020903
.10.1115/1.4032230
23.
Zhang
,
T.
,
Muthusamy
,
J. P.
,
Alvarado
,
J.
,
Kanjirakat
,
A.
, and
Sadr
,
R.
,
2018
, “
Experimental and Numerical Visualization of Heat Transfer and Hydrodynamics Induced by Double Droplet Train Impingement
,”
ASME J. Heat Transfer
,
140
(
8
), p.
080901
.10.1115/1.4040393
24.
Guggilla
,
G.
,
Pattamatta
,
A.
, and
Narayanaswamy
,
R.
,
2018
, “
Numerical Investigation Into the Evaporation Dynamics of Drop-on-Drop Collisions Over Heated Wetting Surfaces
,”
Int. J. Heat Mass Transfer
,
123
, pp.
1050
1067
.10.1016/j.ijheatmasstransfer.2018.03.029
25.
Guggilla
,
G.
,
Narayanaswamy
,
R.
,
Stephan
,
P.
, and
Pattamatta
,
A.
,
2021
, “
Influence of Flow Rate and Surface Thickness on Heat Transfer Characteristics of Two Consecutively Impinging Droplets on a Heated Surface
,”
Int. J. Heat Mass Transfer
,
165
, p.
120688
.10.1016/j.ijheatmasstransfer.2020.120688
26.
Batzdorf
,
S.
,
Breitenbach
,
J.
,
Schlawitschek
,
C.
,
Roisman
,
I. V.
,
Tropea
,
C.
,
Stephan
,
P.
, and
Gambaryan-Roisman
,
T.
,
2017
, “
Heat Transfer During Simultaneous Impact of Two Drops Onto a Hot Solid Substrate
,”
Int. J. Heat Mass Transfer
,
113
, pp.
898
907
.10.1016/j.ijheatmasstransfer.2017.05.091
27.
Gholijani
,
A.
,
Schlawitschek
,
C.
,
Gambaryan-Roisman
,
T.
, and
Stephan
,
P.
,
2020
, “
Heat Transfer During Drop Impingement Onto a Hot Wall: The Influence of Wall Superheat, Impact Velocity, and Drop Diameter
,”
Int. J. Heat Mass Transfer
,
153
, p.
119661
.10.1016/j.ijheatmasstransfer.2020.119661
28.
Guggilla
,
G.
,
Narayanaswamy
,
R.
, and
Pattamatta
,
A.
,
2020
, “
An Experimental Investigation Into the Spread and Heat Transfer Dynamics of a Train of Two Concentric Impinging Droplets Over a Heated Surface
,”
Exp. Therm. Fluid Sci.
,
110
, p.
109916
.10.1016/j.expthermflusci.2019.109916
29.
Guggilla
,
G.
,
Narayanaswamy
,
R.
, and
Pattamatta
,
A.
,
2019
, “
A Parametric Study on Spread and Heat Transfer Characteristics of Two Consecutively Impinging Droplets Over a Hot Surface
,” Proceedings of the 25th National and Third International ISHMT-ASTFE Heat and Mass Transfer Conference (
IHMTC-2019
), Begel House, Roorkee, India, Dec. 28–31, pp. 467–472.10.1615/IHMTC-2019.790
30.
Gholijani
,
A.
,
Gambaryan-Roisman
,
T.
, and
Stephan
,
P.
,
2020
, “
Experimental Investigation of Hydrodynamics and Heat Transport During Vertical Coalescence of Multiple Successive Drops Impacting a Hot Wall Under Saturated Vapor Atmosphere
,”
Exp. Therm. Fluid Sci.
,
118
, p.
110145
.10.1016/j.expthermflusci.2020.110145
31.
Schweizer
,
N.
,
2010
, “
Multi-Scale Investigation of Nucleate Boiling Phenomena in Microgravity
,” Ph.D. thesis,
Technische Universität
, Darmstadt, Germany.
32.
Batzdorf
,
S.
,
2015
, “
Heat Transfer and Evaporation During Single Drop Impingement Onto a Superheated Wall
,” Ph.D. thesis,
Technische Universität
, Darmstadt, Germany.
33.
Bernardin
,
J.
, and
Mudawar
,
I.
,
1999
, “
The Leidenfrost Point: Experimental Study and Assessment of Existing Models
,”
ASME J. Heat Transfer
,
121
(
4
), pp.
894
903
.10.1115/1.2826080
34.
Pedersen
,
C.
,
1970
, “
An Experimental Study of the Dynamic Behavior and Heat Transfer Characteristics of Water Droplets Impinging Upon a Heated Surface
,”
Int. J. Heat Mass Transfer
,
13
(
2
), pp.
369
381
.10.1016/0017-9310(70)90113-4
You do not currently have access to this content.