The presence of unknown thermal contact thermal resistance has limited prior two-probe thermal transport measurements of suspended graphene samples. Here, we report four-probe thermal transport measurements of suspended seven-layer graphene. By isolating the thermal contact resistance, we are able to attribute the observed reduced thermal conductivity primarily to polymeric residue on the sample instead of the contact thermal resistance, which resulted in ambiguity in the prior experimental studies of the effect of polymer reside. The extrinsic scattering rate due to the polymer residue is extracted from the measurement results based on a solution of the Peierls-Boltzmann phonon transport equation.
References
1.
Slack
, G. A.
, 1973
, “Nonmetallic Crystals With High Thermal Conductivity
,” J. Phys. Chem. Solids
, 34
(2
), pp. 321
–335
.2.
Lindsay
, L.
, Broido
, D. A.
, and Mingo
, N.
, 2010
, “Flexural Phonons and Thermal Transport in Graphene
,” Phys. Rev. B
, 82
(11
), p. 115427
.3.
Ding
, Z.
, Zhou
, J.
, Song
, B.
, Chiloyan
, V.
, Li
, M.
, Liu
, T.-H.
, and Chen
, G.
, 2018
, “Phonon Hydrodynamic Heat Conduction and Knudsen Minimum in Graphite
,” Nano Lett.
, 18
(1
), pp. 638
–649
.4.
Lee
, S.
, Broido
, D.
, Esfarjani
, K.
, and Chen
, G.
, 2015
, “Hydrodynamic Phonon Transport in Suspended Graphene
,” Nat. Commun.
, 6
(1
), p. 6290
.5.
Cepellotti
, A.
, Fugallo
, G.
, Paulatto
, L.
, Lazzeri
, M.
, Mauri
, F.
, and Marzari
, N.
, 2015
, “Phonon Hydrodynamics in Two-Dimensional Materials
,” Nat. Commun.
, 6
(1
), p. 6400
.6.
Lee
, S.
, and Lindsay
, L.
, 2017
, “Hydrodynamic Phonon Drift and Second Sound in a (20,20) Single-Wall Carbon Nanotube
,” Phys. Rev. B
, 95
(18
), p. 184304
.7.
Chen
, G.
, 2005
, Nanoscale Energy Transfer and Conversion
, Oxford University Press
, New York.8.
Kim
, P.
, Shi
, L.
, Majumdar
, A.
, and McEuen
, P. L.
, 2001
, “Thermal Transport Measurements of Individual Multiwalled Nanotubes
,” Phys. Rev. Lett.
, 87
(21
), p. 215502
.9.
Shi
, L.
, Li
, D.
, Yu
, C.
, Jang
, W.
, Kim
, D.
, Yao
, Z.
, Kim
, P.
, and Majumdar
, A.
, 2003
, “Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device
,” ASME J. Heat Transfer
, 125
(5
), p. 881
.10.
Pettes
, M. T.
, and Shi
, L.
, 2009
, “Thermal and Structural Characterizations of Individual Single-, Double-, and Multi-Walled Carbon Nanotubes
,” Adv. Funct. Mater.
, 19
(24
), pp. 3918
–3925
.11.
Xu
, X.
, Pereira
, L. F. C.
, Wang
, Y.
, Wu
, J.
, Zhang
, K.
, Zhao
, X.
, Bae
, S.
, Tinh Bui
, C.
, Xie
, R.
, Thong
, J. T. L.
, Hong
, B. H.
, Loh
, K. P.
, Donadio
, D.
, Li
, B.
, and Özyilmaz
, B.
, 2014
, “Length-Dependent Thermal Conductivity in Suspended Single-Layer Graphene
,” Nat. Commun.
, 5
(1
), p. 3689
.12.
Seol
, J. H.
, Jo
, I.
, Moore
, A. L.
, Lindsay
, L.
, Aitken
, Z. H.
, Pettes
, M. T.
, Li
, X.
, Yao
, Z.
, Huang
, R.
, Broido
, D.
, Mingo
, N.
, Ruoff
, R. S.
, and Shi
, L.
, 2010
, “Two-Dimensional Phonon Transport in Supported Graphene
,” Science
, 328
(5975
), pp. 213
–216
.13.
Pettes
, M. T.
, Jo
, I.
, Yao
, Z.
, and Shi
, L.
, 2011
, “Influence of Polymeric Residue on the Thermal Conductivity of Suspended Bilayer Graphene
,” Nano Lett.
, 11
(3
), pp. 1195
–1200
.14.
Wang
, Z.
, Xie
, R.
, Bui
, C. T.
, Liu
, D.
, Ni
, X.
, Li
, B.
, and Thong
, J. T. L. L.
, 2011
, “Thermal Transport in Suspended and Supported Few-Layer Graphene
,” Nano Lett.
, 11
(1
), pp. 113
–118
.15.
Wang
, H.
, Hu
, S.
, Takahashi
, K.
, Zhang
, X.
, Takamatsu
, H.
, and Chen
, J.
, 2017
, “Experimental Study of Thermal Rectification in Suspended Monolayer Graphene
,” Nat. Commun.
, 8
, p. 15843
.16.
Wang
, J.
, Zhu
, L.
, Chen
, J.
, Li
, B.
, and Thong
, J. T. L.
, 2013
, “Suppressing Thermal Conductivity of Suspended Tri-Layer Graphene by Gold Deposition
,” Adv. Mater.
, 25
(47
), pp. 6884
–6888
.17.
Jo
, I.
, Pettes
, M. T.
, Lindsay
, L.
, Ou
, E.
, Weathers
, A.
, Moore
, A. L.
, Yao
, Z.
, and Shi
, L.
, 2015
, “Reexamination of Basal Plane Thermal Conductivity of Suspended Graphene Samples Measured by Electro-Thermal Micro-Bridge Methods
,” AIP Adv.
, 5
(5
), p. 053206
.18.
Yu
, C.
, and Zhang
, G.
, 2013
, “The Underestimated Thermal Conductivity of Graphene in Thermal-Bridge Measurement: A Computational Study
,” J. Appl. Phys.
, 113
(21
), p. 214304
.19.
Seol
, J. H.
, Moore
, A. L.
, Shi
, L.
, Jo
, I.
, and Yao
, Z.
, 2011
, “Thermal Conductivity Measurement of Graphene Exfoliated on Silicon Dioxide
,” ASME J. Heat Transfer
, 133
(2
), p. 022403
.20.
Kim
, J.
, Ou
, E.
, Sellan
, D. P.
, and Shi
, L.
, 2015
, “A Four-Probe Thermal Transport Measurement Method for Nanostructures
,” Rev. Sci. Instrum.
, 86
(4
), p. 044901
.21.
Smith
, B.
, Vermeersch
, B.
, Carrete
, J.
, Ou
, E.
, Kim
, J.
, Mingo
, N.
, Akinwande
, D.
, and Shi
, L.
, 2017
, “Temperature and Thickness Dependences of the Anisotropic in-Plane Thermal Conductivity of Black Phosphorus
,” Adv. Mater.
, 29
(5
), p. 1603756
.22.
Huxtable
, S. T.
, Cahill
, D. G.
, and Phinney
, L. M.
, 2004
, “Thermal Contact Conductance of Adhered Microcantilevers
,” J. Appl. Phys.
, 95
(4
), pp. 2102
–2108
.23.
Touloukian
, Y. S.
, Powell
, R. W.
, Ho
, C. Y.
, and Klemens
, P. G.
, 1971
, Thermophysical Properties of Matter: Thermal Conductivity of Nonmetallic Solids
, Ifi/Plenum
, New York
.24.
Li
, X.
, and Lee
, S.
, 2018
, “Role of Hydrodynamic Viscosity on Phonon Transport in Suspended Graphene
,” Phys. Rev. B
, 97
(9
), p. 94309
.25.
Lindsay
, L.
, Broido
, D. A.
, and Mingo
, N.
, 2011
, “Flexural Phonons and Thermal Transport in Multilayer Graphene and Graphite
,” Phys. Rev. B
, 83
, p. 235428
.26.
Qiu
, B.
, and Ruan
, X.
, 2012
, “Reduction of Spectral Phonon Relaxation Times From Suspended to Supported Graphene
,” Appl. Phys. Lett.
, 100
(19
), p. 193101
.Copyright © 2019 by ASME
You do not currently have access to this content.