The effect of eccentricity on heat transfer in upward flow in a vertical, open-ended, annular channel with a diameter ratio of 0.61, an aspect ratio of 18:1, and both internal surfaces heated uniformly has been investigated experimentally. Results have been reported for eccentricities ranging from the concentric case to the near-contact case and three inlet bulk Reynolds numbers, equal approximately to 1500, 2800, and 5700. This work complements our recently reported experimental results on natural convection in the same facility. The present results are deemed to be largely in the mixed convection regime with some overlap with the forced convection regime and likely to include cases with laminar, transitional, and turbulent flows in at least a part of the test section. Small eccentricity had an essentially negligible effect on the overall heat transfer rate, but high eccentricity reduced the average heat transfer rate by up to 60%. High eccentricity also resulted in wall temperatures in the narrow gap region that were much higher than those in the open channel. The concentric-case Nusselt number was higher than the Dittus–Boelter prediction, whereas the highly eccentric-case Nusselt number was significantly lower than that.

References

1.
Jackson
,
J. D.
, and
Hall
,
W. B.
,
1979
, “
Influences of Buoyancy on Heat Transfer to Fluids Flowing in Vertical Tubes Under Turbulent Conditions
,”
Turbulent Forced Convection in Channels and Bundles
, Vol. 2,
Kakaç
,
S.
, and
Spalding
,
D. B.
, eds.,
Hemisphere
,
WA
, pp.
613
640
.
2.
Jackson
,
J. D.
,
Cotton
,
M. A.
, and
Axcell
,
B. P.
,
1989
, “
Studies of Mixed Convection in Vertical Tubes
,”
Int. J. Heat Fluid Flow
,
10
(
1
), pp.
2
15
.10.1016/0142-727X(89)90049-0
3.
Tavoularis
,
S.
,
2011
, “
Rod Bundle Vortex Networks, Gap Vortex Streets, and Gap Instability: A Nomenclature and Some Comments on Available Methodologies
,”
Nucl. Eng. Des.
,
241
(
7
), pp.
2624
2626
.10.1016/j.nucengdes.2011.03.052
4.
Piot
,
E.
, and
Tavoularis
,
S.
,
2011
, “
Gap Instability of Laminar Flows in Eccentric Annular Channels
,”
Nucl. Eng. Des.
,
241
(
11
), pp.
4615
4620
.10.1016/j.nucengdes.2010.08.025
5.
Meyer
,
L.
,
2010
, “
From Discovery to Recognition of Periodic Large Scale Vortices in Rod Bundles as Source of Natural Mixing Between Subchannels—A Review
,”
Nucl. Eng. Des.
,
240
, pp.
1575
1588
.10.1016/j.nucengdes.2010.03.014
6.
Merzari
,
E.
,
Wang
,
S.
,
Ninokata
,
H.
, and
Theofilis
,
V.
,
2008
, “
Biglobal Linear Stability Analysis for the Flow in Eccentric Annular Channels and a Related Geometry
,”
Phys. Fluids
,
20
, p.
114104-1
–114104-13.10.1063/1.3005864
7.
Merzari
,
E.
, and
Ninokata
,
H.
,
2009
, “
Anisotropic Turbulence and Coherent Structures in Eccentric Annular Channels
,”
Flow Turbul. Combust.
,
82
, pp.
93
120
.10.1007/s10494-008-9170-2
8.
Ninokata
,
H.
,
Merzari
,
E.
, and
Khakim
,
A.
,
2009
, “
Analysis of Low Reynolds Number Turbulent Flow Phenomena in Nuclear Fuel Pin Subassemblies of Tight Lattice Configuration
,”
Nucl. Eng. Des.
,
239
, pp.
855
866
.10.1016/j.nucengdes.2008.10.030
9.
Dalle Donne
,
M.
, and
Meerwald
,
E.
,
1973
, “
Heat Transfer and Friction Coefficients for Turbulent Flow of Air in Smooth Annuli at High Temperatures
,”
Int. J. Heat Mass Transfer
,
16
, pp.
787
809
.10.1016/0017-9310(73)90091-4
10.
Childs
,
P. R. N.
, and
Long
,
C. A.
,
1996
, “
A Review of Forced Convective Heat Transfer in Stationary and Rotating Annuli
,”
Proc. Inst. Mech. Eng.
,
210
, pp.
123
134
.10.1243/PIME_PROC_1996_210_179_02
11.
El-Genk
,
M. S.
, and
Rao
,
D. V.
,
1990
, “
Buoyancy Induced Instability of Laminar Flows in Vertical Annuli—I Flow Visualization and Heat Transfer Experiments
,”
Int. J. Heat Mass Transfer
,
33
, pp.
2145
2159
.10.1016/0017-9310(90)90116-C
12.
Hasan
,
A.
,
Roy
,
R. P.
, and
Kalra
,
S. P.
,
1992
, “
Velocity and Temperature Fields in Turbulent Liquid Flow Through a Vertical Concentric Annular Channel
,”
Int. J. Heat Mass Transfer
,
35
, pp.
1455
1467
.10.1016/0017-9310(92)90036-R
13.
Kang
,
S.
,
Patil
,
B.
,
Zarate
,
J. A.
, and
Roy
,
R. P.
,
2001
, “
Isothermal and Heated Turbulent Upflow in a Vertical Annular Channel—Part I: Experimental Measurements
,”
Int. J. Heat Mass Transfer
,
44
, pp.
1171
1184
.10.1016/S0017-9310(00)00150-2
14.
Yu
,
B.
,
Kawaguchi
,
Y.
,
Kaneda
,
M.
,
Ozoe
,
H.
, and
Churchill
,
S. W.
,
2005
, “
The Computed Characteristics of Turbulent Flow and Convection in Concentric Circular Annuli—Part II: Uniform Heating on the Inner Surface
,”
Int. J. Heat Mass Transfer
,
48
, pp.
621
634
.10.1016/j.ijheatmasstransfer.2004.08.022
15.
Yu
,
B.
,
Kawaguchi
,
Y. M.
,
Ozoe
,
H.
, and
Churchill
,
S. W.
,
2005
, “
The Computed Characteristics of Turbulent Flow and Convection in Concentric Circular Annuli—Part III: Alternative Thermal Boundary Conditions
,”
Int. J. Heat Mass Transfer
,
48
, pp.
635
646
.10.1016/j.ijheatmasstransfer.2004.08.026
16.
Chung
,
S. Y.
, and
Sung
,
H. J.
,
2003
, “
Direct Numerical Simulation of Turbulent Concentric Annular Pipe Flow—Part II: Heat Transfer
,”
Int. J. Heat Fluid Flow
,
24
, pp.
399
411
.10.1016/S0142-727X(03)00017-1
17.
Ould-Rouiss
,
M.
,
Redjem-Saad
,
L.
, and
Lauriat
,
G.
,
2009
, “
Direct Numerical Simulation of Turbulent Heat Transfer in Annuli: Effect of Heat Flux Ratio
,”
Int. J. Heat Fluid Flow
,
30
, pp.
579
589
.10.1016/j.ijheatfluidflow.2009.02.018
18.
Lee
,
J. S.
,
Xu
,
X.
, and
Pletcher
,
R. H.
,
2004
, “
Large Eddy Simulation of Heated Vertical Annular Pipe Flow in Fully Developed Turbulent Mixed Convection
,”
Int. J. Heat Mass Transfer
,
47
, pp.
437
446
.10.1016/j.ijheatmasstransfer.2003.07.010
19.
Sun
,
Z. N.
,
Yan
,
C. Q.
,
Tan
,
H. P.
,
Guo
,
J. Q.
, and
Sun
,
L. C.
,
2002
, “
Forced Convection Heat Transfer in Narrow Annulus With Bilateral Heating
,”
Nucl. Power Eng.
,
23
(
4
), pp.
33
36
.
20.
Zeng
,
H. Y.
,
Qiu
,
S. Z.
, and
Jia
,
D. N.
,
2007
, “
Investigation of the Characteristics of the Flow and Heat Transfer in Bilaterally Heated Narrow Annuli
,”
Int. J. Heat Mass Transfer
,
50
, pp.
492
501
.10.1016/j.ijheatmasstransfer.2006.07.021
21.
Manglik
,
R. M.
, and
Fang
,
P. P.
,
1995
, “
Effect of Eccentricity and Thermal Boundary Conditions on Laminar Fully Developed Flow in Annular Ducts
,”
Int. J. Heat Fluid Flow
,
16
, pp.
298
306
.10.1016/0142-727X(95)00030-T
22.
Mokheimer
,
E. M. A.
, and
El-Shaarawi
,
M. A. I.
,
2004a
, “
Developing Mixed Convection in Vertical Eccentric Annuli
,”
Heat Mass Transfer
,
41
, pp.
176
187
.10.1007/s00231-004-0544-2
23.
Mokheimer
,
E. M. A.
, and
El-Shaarawi
,
M. A. I.
,
2004b
, “
Critical Values of Gr/Re for Mixed Convection in Vertical Eccentric Annuli With Isothermal/Adiabatic Walls
,”
ASME J. Heat Transfer
,
126
, pp.
479
492
.10.1115/1.1725116
24.
Choueiri
,
G. H.
, and
Tavoularis
,
S.
,
2011
, “
An Experimental Study of Natural Convection in Vertical, Open-Ended, Concentric and Eccentric Annular Channels
,”
ASME J. Heat Transfer
,
133
(
12
), p.
122503-1
122503-9
.10.1115/1.4004428
25.
Sparrow
,
E. M.
,
Chrysler
,
G. M.
, and
Azevedo
,
L. F.
,
1984
, “
Observed Flow Reversals and Measured-Predicted Nusselt Numbers for Natural Convection in a One-Sided Heated Vertical Channel
,”
ASME J. Heat Transfer
,
106
, pp.
325
332
.10.1115/1.3246676
26.
Tavoularis
,
S.
,
2005
,
Measurement in Fluid Mechanics
,
Cambridge University Press
,
Cambridge, UK
.
27.
Incropera
,
F. P.
, and
DeWitt
,
D. P.
,
2006
,
Introduction to Heat Transfer
, Fifth ed.,
Wiley
,
Hoboken, NJ
.
28.
Dittus
,
F. W.
, and
Boelter
,
L. M. K.
,
1930
, “
Heat Transfer in Automobile Radiators of the Tubular Type
,
UC Pub. Eng.
,
2
, pp.
443
461
.10.1016/0735-1933/85
You do not currently have access to this content.