This paper reports the results of an experimental study to determine the principal thermal conductivities (kx,ky, and kz) of an anisotropic composite medium using an inverse heat transfer analysis. The direct problem consists of solving the three dimensional heat conduction equation in an orthotropic composite medium with the finite difference method to generate the required temperature distribution for known thermal conductivities. The measurement technique involves dissipating a known heat flux at the central region of a square sample and allowing it to conductively transfer the heat to an aluminium cold plate sink via a square copper ring. At steady state, temperatures at 28 (19 are used for retrievals due to symmetry) discrete locations are logged and used for parameter estimation. The entire measurement process is conducted in a vacuum environment. The inverse heat conduction problem (IHCP) for retrieving the orthotropic thermal conductivity tensor(parameter estimation) is then solved using a two layer feed forward back propagation artificial neural network (ANN) trained using the Levenberg–Marquardt algorithm (LMA), with temperatures as input and thermal conductivity values kx,ky, and kz as the output. The method is first validated against a stainless steel(SS-304) sample of known thermal properties followed by the determination of the orthotropic conductivities of the honeycomb composite material.

References

1.
Beck
,
J.
,
St. Clair
,
C.
, and
Blackwell
,
B.
,
1985
,
Inverse Heat Conduction
,
John Wiley and Sons Inc.
,
New York
.
2.
Sawaf
,
B.
,
Ozisik
,
M.
, and
Jarny
,
Y.
,
1995
, “
An Inverse Analysis to Estimate Linearly Temperature Dependent Thermal Conductivity Components and Heat Capacity of an Orthotropic Medium
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
3005
3010
.10.1016/0017-9310(95)00044-A
3.
Sawaf
,
B.
, and
Ozisik
,
M.
,
1995
, “
Determining the Constant Thermal Conductivities of Orthotropic Materials by Inverse Analysis
,”
Int. Commun. Heat Mass Transfer
,
22
(
2
), pp.
201
211
.10.1016/0735-1933(95)00005-4
4.
Thomas
,
M.
,
Boyard
,
N.
,
Lefèvre
,
N.
,
Jarny
,
Y.
, and
Delaunay
,
D.
,
2010
, “
An Experimental Device for the Simultaneous Estimation of the Thermal Conductivity 3-D Tensor and the Specific Heat of Orthotropic Composite Materials
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5487
5498
.10.1016/j.ijheatmasstransfer.2010.07.008
5.
Deiveegan
,
M.
,
Balaji
,
C.
, and
Venkateshan
,
S.
,
2006
, “
Comparison of Various Methods for Simultaneous Retrieval of Surface Emissivities and Gas Properties in Gray Participating Media
,”
ASME J. Heat Transfer
,
128
, pp.
829
837
.10.1115/1.2227037
6.
Deng
,
S.
, and
Hwang
,
Y.
,
2006
, “
Applying Neural Networks to the Solution of Forward and Inverse Heat Conduction Problems
,”
Int. J. Heat Mass Transfer
,
49
(
25–26
), pp.
4732
4750
.10.1016/j.ijheatmasstransfer.2006.06.009
7.
Krejsa
,
J.
,
Woodbury
,
K.
,
Ratliff
,
J.
, and
Raudensky
,
M.
,
1999
, “
Assessment of Strategies and Potential for Neural Networks in the Inverse Heat Conduction Problem
,”
Inverse Probl. Sci. Eng.
,
7
(
3
), pp.
197
213
.10.1080/174159799088027694
8.
Mera
,
N.
,
Elliott
,
L.
,
Ingham
,
D.
, and
Lesnic
,
D.
,
2001
, “
Use of the Boundary Element Method to Determine the Thermal Conductivity Tensor of an Anisotropic Medium
,”
Int. J. Heat Mass Transfer
,
44
(
21
), pp.
4157
4167
.10.1016/S0017-9310(01)00028-X
9.
Dong
,
C.
,
Sun
,
F.
, and
Meng
,
B.
,
2007
, “
A Method of Fundamental Solutions for Inverse Heat Conduction Problems in an Anisotropic Medium
,”
Eng. Anal. Boundary Elem.
,
31
(
1
), pp.
75
82
.10.1016/j.enganabound.2006.04.007
10.
Taktak
,
R.
,
Beck
,
J.
, and
Scott
,
E.
,
1993
, “
Optimal Experimental Design for Estimating Thermal Properties of Composite Materials
,”
Int. J. Heat Mass Transfer
,
36
(
12
), pp.
2977
2986
.10.1016/0017-9310(93)90027-4
11.
ISRO, “
Thermal Properties of Spacecraft Materials—Data Bank
,”
TPMS, Thermal Systems Group, ISAC, ISRO
,
Bangalore, India
.
12.
Venkateshan
,
S. P.
,
2008
,
Mechanical Measurements
,
Ane Books
,
New Delhi, India
.
13.
Samarjeet
,
C.
,
Yenni
,
G. R.
,
Ambirajan
,
A.
,
Balaji
,
C.
, and
Venkateshan
,
S. P.
,
2011
, “
An Inverse Analysis for Estimation of Thermal Conductivity of Orthotropic Composite Medium Using Artificial Neural Network
,”
Proceedings of the 21st National and 10th ISHMT-ASME Heat and Mass Transfer Conference
, December 27–30,
IIT Madras
,
India
.
14.
Blackwell
,
B.
,
Gill
,
W.
,
Dowding
,
K.
, and
Voth
,
T.
,
2000
, “
Determination of Thermal Conductivity of 304 Stainless Steel Using Parameter Estimation Techniques
,”
34th National Heat Transfer Conference–NHTC
,
Pittsburgh
,
PA
, Aug. 20–22.
15.
Nishino
,
K.
,
Yamashita
,
S.
, and
Torii
,
K.
,
1995
, “
Thermal Contact Conductance Under Low Applied Load in a Vacuum Environment
,”
Exp. Therm. Fluid Sci.
,
10
(
2
), pp.
258
271
.10.1016/0894-1777(94)00091-L
You do not currently have access to this content.