An experimental study of jet impingement boiling is presented for water under saturated and subcooled conditions. Unique to this study is the documentation of boiling curves of a submerged water jet under subatmospheric conditions. Data are reported at a fixed nondimensional nozzle-to-surface distance of H/dj = 6 and for a fixed surface-to-nozzle diameter ratio, dsurf/dj, of 23.8. Saturated jet impingement experiments are performed at three subatmospheric pool pressures of 0.176 bar, 0.276 bar, and 0.478 bar with corresponding saturation temperatures of 57.3 °C, 67.2 °C, and 80.2 °C. At each pressure, jet impingement boiling at varying Reynolds numbers are characterized and compared with pool boiling heat transfer. The effect of surface roughness and fluid subcooling is studied at the lowest pressure of 0.176 bar. Boiling curves indicate a strong dependence of heat flux on jet Reynolds number in the partially developed nucleate boiling region but only a weak dependence in the fully developed nucleate boiling region. At a fixed wall superheat, fluid subcooling is found to shift the boiling curve to the left thereby enhancing heat transfer performance. Critical heat flux is found to increase with increases in pressure, surface roughness, and Reynolds number.

References

1.
Kandlikar
,
S. G.
, and
Bapat
,
A. V.
, 2007, “
Evaluation of Jet Impingement Spray and Microchannel Chip Cooling Options for High Heat Flux Removal
,”
Heat Transfer Eng.
,
28
(
11
), pp.
911
923
.
2.
Wolf
,
D. H.
,
Incropera
,
F. P.
, and
Viskanta
,
R.
, 1993, “
Jet Impingement Boiling
,”
Adv. Heat Transfer
,
23
, pp.
1
132
.
3.
Dukle
,
N. M.
, and
Hollingsworth
,
D. K.
, 1996, “
Liquid Crystal Images of the Transition From Jet Impingement Convection to Nucleate Boiling Part I: Monotonic Distribution of the Convection Coefficient
,”
Exp. Therm. Fluid Sci.
,
12
, pp.
274
287
.
4.
Dukle
,
N. M.
, and
Hollingsworth
,
D. K.
, 1996, “
Liquid Crystal Images of the Transition From Jet Impingement Convection to Nucleate Boiling Part II: Nonmonotonic Distribution of the Convection Coefficient
,”
Exp. Therm. Fluid Sci.
,
12
, pp.
288
297
.
5.
Katto
,
Y.
, and
Kunihiro
,
M.
, 1973, “
Study of the Mechanism of Burn-out in Boiling System of High Burn-out Heat Flux
,”
Bull. Jpn. Soc. Mech. Eng.
,
16
(
99
), pp.
1357
1366
.
6.
Ma
,
C. F.
, and
Bergles
,
A. E.
, 1986, “
Jet Impingement Nucleate Boiling
,”
Int. J. Heat Mass Transfer
,
29
(
8
), pp.
1095
1101
.
7.
Zhou
,
D. W.
,
Ma
,
C. F.
, and
Yu
,
J.
, 2004, “
Boiling Hysteresis of Impinging Circular Submerged Jets With Highly Wetting Liquids
,”
Int. J. Heat Fluid Flow
,
25
, pp.
81
90
.
8.
Zhou
,
D. W.
, and
Ma
,
C. F.
, 2004, “
Local Jet Impingement Boiling Heat Transfer With R113
,”
Heat Mass Transfer
,
40
, pp.
539
549
.
9.
Pal
,
A.
,
Joshi
,
Y.
,
Bietelmal
,
M. H.
,
Patel
,
C. D.
, and
Wenger
,
T. M.
, 2002, “
Design and Performance Evaluation of a Compact Thermosyphon
,”
IEEE Trans. Compon. Packag. Technol.
,
25
(
4
), pp.
601
607
.
10.
Jones
,
B. J.
,
McHale
,
J. P.
, and
Garimella
,
S. V.
, 2009, “
The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer
,”
J. Heat Transfer
,
131
(
12
),
121009
.
11.
Moffat
,
R. J.
, 1988, “
Describing Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
, pp.
3
17
.
12.
Cleveland
,
W. S.
, and
Devlin
,
S. J.
, 1988, “
Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting
,”
J. Am. Stat. Assoc.
,
83
, pp.
596
610
.
13.
Schlax
,
M. G.
, and
Chelton
,
D. B.
, 1992, “
Frequency Domain Diagnostics for Linear Smoothers
,”
J. Am. Stat. Assoc.
,
87
, pp.
1070
1081
.
14.
Cardenas
,
R.
,
Mani
,
P.
, and
Narayanan
,
V.
, 2011, “
Sub-Atmospheric Mini-Jet Impingement Boiling of Water Under Saturated and Subcooled Conditions
,”
Proceeding of ASME/JSME 8th Thermal Engineering Joint Conference
,
Honolulu, HI
, Paper No. AJTE2011-44388.
15.
Incropera
,
F. P.
,
DeWitt
,
D. P.
,
Bergman
,
T. L.
, and
Lavine
,
A. S.
, 2006,
Fundamentals of Heat and Mass Transfer
, 6th ed.,
Wiley
,
New York
.
16.
Carey
,
V. P.
, 2008,
Liquid-Vapor Phase-Change Phenomena
, 2nd ed.,
Taylor & Francis Group
,
New York
.
You do not currently have access to this content.