Phonon transport across constrictions formed by a nanowire or a nanoparticle on a substrate is studied by a numerical solution of the gray Boltzmann transport equation (BTE) resolving the effects of two length scales that govern problems of practical importance. Predictions of total thermal resistance for wire/substrate and particle/substrate combinations are made for the entire range of Knudsen number, with an emphasis on resolving transport in the mesoscopic regime where ballistic-diffusive mechanisms operate and analytical expressions are not available. The relative magnitudes of bulk and constriction resistance are established, and a correlation for overall thermal resistance spanning the range of practical Knudsen numbers is provided.
Issue Section:
Micro/Nanoscale Heat Transfer
Keywords:
ballistic transport,
Boltzmann equation,
diffusion,
Knudsen flow,
mesoscopic systems,
nanoparticles,
nanowires,
phonons,
thermal conductivity,
Boltzmann transport equation,
constriction resistance,
ballistic-diffusive transition,
gas gap conductance,
slip flow and heat transfer,
Knudsen number,
temperature jump
1.
Cahill
, D. G.
, Ford
, W. K.
, Goodson
, K. E.
, Mahan
, G. D.
, Majumdar
, A.
, Maris
, H. J.
, Merlin
, R.
, and Phillpot
, S. R.
, 2003, “Nanoscale Thermal Transport
,” J. Appl. Phys.
0021-8979, 93
(2
), pp. 793
–818
.2.
Huxtable
, S. T.
, Cahill
, D. G.
, Shenogin
, S.
, Xue
, L.
, Ozisik
, R.
, Barone
, P.
, Usrey
, M.
, Strano
, M. S.
, Siddons
, G.
, Shim
, M.
, and Keblinski
, P.
, 2003, “Interfacial Heat Flow in Carbon Nanotube Suspensions
,” Nature Mater.
1476-1122, 2
(11
), pp. 731
–734
.3.
Kumar
, S.
, Murthy
, J. Y.
, and Alam
, M. A.
, 2005, “Percolating Conduction in Finite Nanotube Networks
,” Phys. Rev. Lett.
0031-9007, 95
(6
), p. 066802
.4.
Yang
, R.
, and Chen
, G.
, 2004, “Thermal Conductivity Modeling of Periodic Two-Dimensional Nanocomposities
,” Phys. Rev. B
0556-2805, 69
(19
), p. 195316
.5.
Martel
, R.
, Schmidt
, T
, Shea
, H. R.
, Hertel
, T.
, and Avouris
, Ph.
, 1998, “Single-and Multi-Wall Carbon Nanotube Field-Effect Transistors
,” Appl. Phys. Lett.
0003-6951, 73
(17
), pp. 2447
–2449
.6.
Xiang
, J.
, Lu
, W.
, Hu
, Y.
, Wu
, Y.
, Yan
, H.
, and Lieber
, C. M.
, 2006, “Ge/Si Nanowire Heterostructures as High-Performance Field-Effect Transistors
,” Nature (London)
0028-0836, 441
, pp. 489
–493
.7.
Pop
, E.
, Mann
, D.
, Goodson
, K. E.
, and Dai
, H.
, 2007, “Electrical and Thermal Transport in Metallic Single-Wall Carbon Nanotubes on Insulating Substrates
,” J. Appl. Phys.
0021-8979, 101
(9
), p. 093710
.8.
Pop
, E.
, 2008, “The Role of Electrical and Thermal Contact Resistance for Joule Breakdown of Single-Wall Carbon Nanotubes
,” Nanotechnology
0957-4484, 19
(29
), p. 295202
.9.
Mingo
, N.
, and Broido
, D. A.
, 2005, “Carbon Nanotube Ballistic Thermal Conductance and Its Limits Export
,” Phys. Rev. Lett.
0031-9007, 95
(9
), p. 096105
.10.
Cola
, B. A.
, Xu
, X.
, and Fisher
, T. S.
, 2007, “Increased Real Contact in Thermal Interfaces: A Carbon Nanotube/Foil Material
,” Appl. Phys. Lett.
0003-6951, 90
(9
), p. 093513
.11.
Cola
, B. A.
, Xu
, J.
, Cheng
, C.
, Hu
, H.
, Xu
, X.
, and Fisher
, T. S.
, 2007, “Photoacoustic Characterization of Carbon Nanotube Array Thermal Interfaces
,” J. Appl. Phys.
0021-8979, 101
(5
), p. 054313
.12.
Linderman
, R.
, Brunschwiler
, T.
, Smith
, B.
, and Michel
, B.
, 2007, “High-Performance Thermal Interface Technology Overview
,” THERMINIC
, Budapest, Hungary.13.
Shi
, L.
, and Majumdar
, A.
, 2002, “Thermal Transport Mechanisms at Nanoscale Point Contacts
,” ASME J. Heat Transfer
0022-1481, 124
, pp. 329
–337
.14.
King
, W. P.
, and Goodson
, K. E.
, 2002, “Thermal Writing and Nanoimaging With a Heated Atomic Force Microscope Cantilever
,” ASME J. Heat Transfer
0022-1481, 124
, p. 597
.15.
Prasher
, R.
, 2005, “Predicting the Thermal Resistance of Nanosized Constrictions
,” Nano Lett.
1530-6984, 5
(11
), pp. 2155
–2159
.16.
Bahadur
, V.
, Xu
, J.
, Liu
, Y.
, and Fisher
, T. S.
, 2005, “Thermal Resistance of Nanowire-Plane Interfaces
,” ASME J. Heat Transfer
0022-1481, 164
(6
), pp. 164
–168
.17.
Duan
, X.
, Niu
, C.
, Sahi
, V.
, Chen
, J.
, Parce
, J.
, Parce
, J. W.
, Empedocles
, S.
, and Goldman
, J. L.
, 2003, “High-Performance Thin-Film Transistors Using Semiconductor Nanowires and Nanoribbons
,” Nature (London)
0028-0836, 425
, pp. 274
–278
.18.
Lifshitz
, R.
, and Roukes
, M. L.
, 2000, “Thermoelastic Damping in Micro- and Nanomechanical Systems
,” Phys. Rev. B
0556-2805, 61
(8
), pp. 5600
–5609
.19.
Bernasconi
, A.
, Sleator
, T.
, Posselt
, D.
, Kjems
, J. K.
, and Ott
, H. R.
, 1992, “Dynamic Properties of Silica Aerogels as Deduced From Specific-Heat and Thermal-Conductivity Measurements
,” Phys. Rev. B
0556-2805, 45
, pp. 10363
–10376
.20.
Domingues
, G.
, Rochais
, D.
, and Volz
, S.
, 2008, “Thermal Contact Resistance Between Two Nanoparticles
,” J. Comput. Theor. Nanosci.
1546-1955, 5
(2
), pp. 153
–156
.21.
Prasher
, R.
, 2006, “Ultralow Thermal Conductivity of a Packed Bed of Crystalline Nanoparticles: A Theoretical Study
,” Phys. Rev. B
0556-2805, 74
, p. 165413
.22.
Zhang
, J.
, Fisher
, T. S.
, Ramanchandran
, P. V.
, Gore
, J. P.
, and Mudawar
, I.
, 2005, “A Review of Heat Transfer Issues in Hydrogen Storage Technologies
,” ASME J. Heat Transfer
0022-1481, 127
, pp. 1391
–1399
.23.
Wexler
, G.
, 1966, “The Size Effect and the Non-Local Boltzmann Transport Equation in Orifice and Disk Geometry
,” Proc. Phys. Soc. London
0370-1328, 89
, pp. 927
–941
.24.
Sharvin
, Y. V.
, 1965, “A Possible Method for Studying Fermi Surfaces
,” Sov. Phys. JETP
0038-5646, 21
, pp. 655
–656
.25.
Nikolić
, B.
, and Allen
, P. B.
, 1999, “Electron Transport Through a Circular Constriction
,” Phys. Rev. B
0556-2805, 60
(6
), pp. 3963
–3969
.26.
McGee
, G. R.
, Schankula
, M. H.
, and Yovanovich
, M. M.
, 1985, “Thermal Resistance of Cylinder-Flat Contacts: Theoretical Analysis and Experimental Verification of a Line-Contact Model
,” Nucl. Eng. Des.
0029-5493, 86
, pp. 369
–381
.27.
Yovanovich
, M. M.
, 1967, “Thermal Contact Resistance Across Elastically Deformed Spheres
,” J. Spacecr. Rockets
0022-4650, 4
(1
), pp. 119
–122
.28.
de Jong
, M. J. M.
, 1994, “Transition From Sharvin to Drude Resistance in High Mobility Wires
,” Phys. Rev. B
0556-2805, 49
(11
), pp. 7778
–7781
.29.
Sondheimer
, E. H.
, 1952, “The Mean Free Path of Electrons in Metals
,” Adv. Phys.
0001-8732, 1
(1
), pp. 1
–42
.30.
Pascual-Gutiérrez
, J. A.
, Murthy
, J. Y.
, and Viskanta
, R. V.
, 2007, “Limits of Size Confinement in Silicon Thin Films and Wires
,” J. Appl. Phys.
0021-8979, 102
(3
), p. 034315
.31.
Schwab
, K.
, Henriksen
, E. A.
, Worlock
, J. M.
, and Roukes
, M. L.
, 2000, “Measurement of the Quantum of Thermal Conductance
,” Nature (London)
0028-0836, 404
, pp. 974
–977
.32.
Cross
, M. C.
, and Lifshitz
, R.
, 2001, “Elastic Wave Transmission at an Abrupt Junction in a Thin Plate With Application to Heat Transport and Vibrations in Mesoscopic Systems
,” Phys. Rev. B
0556-2805, 64
(8
), p. 085324
.33.
Prasher
, R.
, Tong
, T.
, and Majumdar
, A.
, 2007, “An Acoustic and Dimensional Mismatch Model for Thermal Boundary Conductance Between a Vertical Mesoscopic Nanowire/Nanotube and a Bulk Substrate
,” J. Appl. Phys.
0021-8979, 102
(10
), p. 104312
.34.
Saha
, S.
, and Shi
, L.
, 2007, “Molecular Dynamics Simulation of Thermal Transport at a Nanometer Scale Constriction in Silicon
,” J. Appl. Phys.
0021-8979, 101
, p. 074304
.35.
Chung
, J. D.
, and Kaviany
, M.
, 2000, “Effects of Phonon Pore Scattering and Pore Randomness on Effective Conductivity of Porous Silicon
,” Int. J. Heat Mass Transfer
0017-9310, 43
(4
), pp. 521
–538
.36.
Murthy
, J. Y.
, Narumanchi
, S. V. J.
, Pascual-Gutierrez
, J. A.
, Wang
, T.
, Ni
, C.
, and Mathur
, S. R.
, 2005, “Review of Multiscale Simulation in Submicron Heat Transfer
,” Int. J. Multiscale Comp. Eng.
1543-1649, 3
(1
), pp. 5
–32
.37.
Murthy
, J. Y.
, and Mathur
, S. R.
, 2002, “Computation of Sub-Micron Thermal Transport Using an Unstructured Finite Volume Method
,” ASME J. Heat Transfer
0022-1481, 124
(6
), pp. 1176
–1181
.38.
Chen
, G.
, 1998, “Thermal Conductivity and Ballistic Phonon Transport in the Cross-Plane Direction of Superlattices
,” Phys. Rev. B
0556-2805, 57
(23
), pp. 14958
–14973
.39.
Vincenti
, W. J.
, and Kruger
, C. H.
, 1965, Introduction to Physical Gas Dynamics
, Wiley
, New York
.40.
Gad-el-Hak
, M.
, 2001, The MEMS Handbook
, 1st ed., CRC
, Boca Raton, Fl
.41.
Wadsworth
, D. C.
, 1993, “Slip Effects in a Confined Rarefied Gas. I: Temperature Slip
,” Phys. Fluids A
0899-8213, 5
(7
), pp. 1831
–1839
.42.
Singh
, D.
, Guo
, X.
, Alexeenko
, A.
, Murthy
, J. Y.
, and Fisher
, T. S.
, 2009, “Modeling of Subcontinuum Thermal Transport Across Semiconductor-Gas Interfaces
,” J. Appl. Phys.
0021-8979, 106
, p. 024314
.43.
Fu
, C. J.
, and Zhang
, Z. M.
, 2006, “Nanoscale Radiation Heat Transfer for Silicon at Different Doping Levels
,” Int. J. Heat Mass Transfer
0017-9310, 49
, pp. 1703
–1718
.Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.