We report finite-volume simulations of the phonon Boltzmann transport equation (BTE) for heat conduction across the heterogeneous interfaces in SiGe superlattices. The diffuse mismatch model incorporating phonon dispersion and polarization is implemented over a wide range of Knudsen numbers. The results indicate that the thermal conductivity of a Si/Ge superlattice is much lower than that of the constitutive bulk materials for superlattice periods in the submicron regime. We report results for effective thermal conductivity of various material volume fractions and superlattice periods. Details of the nonequilibrium energy exchange between optical and acoustic phonons that originate from the mismatch of phonon spectra in silicon and germanium are delineated for the first time. Conditions are identified for which this effect can produce significantly more thermal resistance than that due to boundary scattering of phonons.

References

1.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
, 2003,
“Nanoscale Thermal Transport,”
J. Appl. Phys.
,
93
(
2
), pp.
793
818
.
2.
Bo
,
X. -Z. -Z.
,
Lee
,
C. Y.
,
Strano
,
M. S.
,
Goldfinger
,
M.
,
Nuckolls
,
C.
, and
Blanchet
,
G. B.
, 2005
“Carbon Nanotubes-Semiconductor Networks for Organic Electronics: The Pickup Stick Transistor,”
Appl. Phys. Lett.
,
86
(
18
),
182102
.
3.
Cola
,
B. A.
,
Xu
,
J.
,
Cheng
,
C.
,
Hu
,
H.
,
Xu
,
X.
, and
Fisher
,
T. S.
, 2007,
“Photoacoustic Characterization of Carbon Nanotube Array Thermal Interfaces,”
J. Appl. Phys.
,
101
(
5
), 054313, pp.
1
9
.
4.
Dresselhaus
,
M. S.
,
Lin
,
M. S.
,
Koga
,
T.
,
Cronin
,
S. B.
,
Rabin
,
O.
,
Black
,
M. R.
, and
Dresselhaus
,
G.
, 2001,
Semiconductors and Semimetals: Recent Trends in Thermoelectric Materials Research III
,
T. M.
Tritt
, ed.,
Academic Press
,
San Diego, CA
, Vol.
71
, pp.
1
121
.
5.
Rowe
,
D. M.
, 2005,
Thermoelectrics—Macro to Nano
,
CRC Press
,
Boca Raton, FL
.
6.
Li
,
D.
,
Wu
,
Y.
,
Kim
,
P.
,
Shi
,
L.
,
Yang
,
P.
, and
Majumdar
,
A.
, 2003,
“Thermal Conductivity of Individual Silicon Nanowires,”
Appl. Phys. Lett.
,
83
(
14
), pp.
2934
2936
.
7.
Kim
,
P.
,
Shi
,
L.
,
Majumdar
,
A.
, and
McEuen
,
P. L.
, 2001,
“Thermal Transport Measurements of Individual Multiwalled Nanotubes,”
Phys. Rev. Lett.
,
87
(
21
),
215502
.
8.
Asheghi
,
M.
,
Leung
,
Y. K.
,
Wong
,
S. S.
, and
Goodson
,
K. E.
, 1997,
“Phonon-Boundary Scattering in Thin Silicon Layers,”
Appl. Phys. Lett.
,
71
(
13
), pp.
1798
1800
.
9.
,
X.
,
Shen
,
W. Z.
, and
Chu
,
J. H.
, 2002,
“Size Effect on the Thermal Conductivity of Nanowires,”
J. Appl. Phys.
91
(
3
), pp.
1542
1552.
10.
Dingle
,
R. B.
, 1949,
“The Electrical Conductivity of Thin Wires,”
Proceedings of the Royal Society (London)
,
A 201
, pp.
545
560
.
11.
Sondheimer
,
E. H.
, 1952,
“The Mean Free Path of Electrons in Metals,”
Adv. Phys.
1
(
1
), pp.
1
42
.
12.
Mingo
,
N.
,
Yang
,
L.
,
Li
,
D.
, and
Majumdar
,
A.
, 2003,
“Predicting the Thermal Conductivity of Si and Ge Nanowires,”
Nano Lett.
,
3
(
12
), pp.
1713
1716
.
13.
Zhang
,
W.
,
Mingo
,
N.
, and
Fisher
,
T. S.
, 2007,
“Simulation of Phonon Transport Across a Nonpolar Nanowire Junction Using an Atomistic Green’s Function Method,”
Phys. Rev. B
,
76
,
195429
.
14.
Zhang
,
W.
,
Mingo
,
N.
, and
Fisher
,
T. S.
, 2007,
“Simulation of Interfacial Phonon Transport in Si–Ge Heterostructures Using an Atomistic Green’s Function Method,”
ASME J. Heat Transfer
,
129
, pp.
483
491
.
15.
Bulusu
,
A.
, and
Walker
,
D. G.
, 2007,
“Quantum Modeling of Thermoelectric Performance of Strained Si/Ge/Si Superlattices Using the Nonequilibrium Green’s Function Method,”
J. Appl. Phys.
,
102
(
7
),
073713
.
16.
Simkin
,
M. V.
, and
Mahan
,
G. D.
, 2000, “
Minimum Thermal Conductivity of Superlattices
,”
Phys. Rev. Lett.
,
84
(
5
), pp.
927
930.
17.
Venkatasubramanian
,
R.
, 2000, “
Lattice Thermal Conductivity Reduction and Phonon Localization Like Behavior in Superlattice Structures
,”
Phys. Rev. B
,
61
(
4
), pp.
3091
3097.
18.
Chen
,
Y.
,
Li
,
D.
,
Lukes
,
J. R.
,
Ni
,
Z.
, and
Chen
,
M.
, 2005,
“Minimum Superlattice Thermal Conductivity From Molecular Dynamics,”
Phys. Rev. B
,
72
(
17
),
174302
.
19.
Landry
,
E. S.
, and
McGaughey
,
A. J. H.
, 2009, “
Effect of Interfacial Species Mixing on Phonon Transport in Semiconductor Superlattices
,”
Phys. Rev. B
,
79
,
075316.
20.
Little
,
W. A.
, 1959,
“The Transport of Heat Between Dissimilar Solids at Low Temperatures,”
Can. J. Phys.
,
37
, pp.
334
349
.
21.
Swartz
,
E. T.
, and
Pohl
,
R. O.
, 1989, “
Thermal Boundary Resistance
,”
Rev. Mod. Phys.
,
61
(
3
), pp.
605
668.
22.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
, 2004, “
Kapitza Conductance and Phonon Scattering at Grain Boundaries by Simulation
,”
J. Appl. Phys.
,
927 95
(
11
), pp.
6082
6091.
23.
Schelling
,
P. K.
,
Phillpot
,
S. R.
, and
Keblinski
,
P.
, 2002, “
Phonon Wave-Packet Dynamics at Semiconductor Interfaces by Molecular-Dynamics Simulation
,”
Appl. Phys. Lett.
,
80
(
14
), pp.
2484
2486.
24.
Sun
,
L.
, and
Murthy
,
J. Y.
, 2008,
“Molecular Dynamics Simulation of Phonon Scattering at Rough Semiconductor Surfaces,”
Proceedings of ITHERM 2008
,
Orlando, FL
.
25.
Zhao
,
H.
, and
Freund
,
J. B.
, 2009,
“Phonon Scattering at a Rough Interface Between Two fcc Lattices,”
J. Appl. Phys.
,
105
(
1
),
013515
.
26.
Ren
,
S. Y.
, and
Dow
,
J. D.
, 1982, “
Thermal Conductivity of Superlattices
,”
Phys. Rev. B
,
25
(
6
), pp.
3750
3755.
27.
Broido
,
D. A.
, and
Reinecke
,
T. L.
, 2004,
“Lattice Thermal Conductivity of Superlattice Structures,”
Phys. Rev. B
,
70
(
8
),
081310
.
28.
Ward
,
A.
, and
Broido
,
D. A.
, 2008,
“Intrinsic Lattice Thermal Conductivity of Si/Ge and GaAs/AlAs Superlattices,”
Phys. Rev. B
,
77
(
24
),
245328
.
29.
Cahill
,
D. G.
, 1997, “
Heat Transport in Dielectric Thin Films and at Solid–Solid Interfaces
,”
Microscale Thermophys. Eng.
,
1
, pp.
85
109.
30.
Lee
,
S. M.
,
Cahill
,
D. G.
, and
Venkatasubramanian
,
R.
, 1997, “
Thermal Conductivity of Si–Ge Superlattices
,”
Appl. Phys. Lett.
,
70
(
22
), pp.
2957
2959.
31.
Chen
,
G.
, 1998, “
Thermal Conductivity and Ballistic Phonon Transport in the Cross-Plane Direction of Superlattices
,”
Phys. Rev. B
,
57
(
23
), pp.
14958
14973.
32.
Borca-Tasciuc
,
T.
,
Liu
,
W. L.
,
Liu
,
J. L.
,
Zeng
,
T.
,
Song
,
D. W.
,
Moore
,
C. D.
,
Chen
,
G.
,
Wang
,
K. L.
,
Goorsky
,
M. S.
,
Radetic
,
T.
,
Gronsky
,
R.
,
Sun
,
X.
, and
Dresselhauss
,
M. S.
, 2000, “
Thermal Conductivity of Symmetrically Strained Si/Ge Superlattices
,”
Superlattices Microstruct.
,
28
, pp.
199
206.
33.
Huxtable
,
S. T.
,
Abramson
,
A.
,
Majumdar
,
A.
,
Tien
,
C. L.
,
Zeng
,
G.
,
LaBounty
,
C.
,
Shakouri
,
A.
,
Bowers
,
J. E.
, and
Croke
,
E.
, 2002, “
Thermal Conductivity of Si/SiGe and SiGe/SiGe Superlattices
,”
Appl. Phys. Lett.
,
80
(
10
), pp.
1737
1739.
34.
Li
,
D.
,
Wu
,
Y.
,
Fan
,
R.
,
Yang
,
P.
, and
Majumdar
,
A.
, 2003, “
Thermal Conductivity of Si/SiGe Superlattice Nanowires
,”
Appl. Phys. Lett.
,
83
(
15
), pp.
3186
3188.
35.
Dames
,
C.
, and
Chen
,
G.
, 2004, “
Theoretical Phonon Thermal Conductivity of Si–Ge Superlattice Nanowires
,”
J. Appl. Phys.
,
95
(
2
), pp.
682
693.
36.
Chen
,
G.
, and
Neagu
,
M.
, 1997, “
Thermal Conductivity and Heat Transfer in Superlattices
,”
Appl. Phys. Lett.
,
71
(
19
), pp.
2761
2763.
37.
Chen
,
G.
, 1997, “
Size and Interface Effects on the Thermal Conductivity of Superlattices and Periodic Thin Film Structures
,”
ASME J. Heat Transfer
,
119
(
2
), pp.
220
229.
38.
Yang
,
R.
, and
Chen
,
G.
, 2004,
“Thermal Conductivity Modeling of Periodic Two-Dimensional Nanocomposities,”
Phys. Rev. B
,
69
(
19
), 195316, pp.
1
10
.
39.
Pascual-Gutiérrez
,
J. A.
,
Murthy
,
J. Y.
, and
Viskanta
,
R. V.
, 2007,
“Limits of Size Confinement in Silicon Thin Films and Wires,”
J. Appl. Phys.
,
102
(
3
),
034315
.
40.
Murthy
,
J. Y.
,
Narumanchi
,
S. V. J.
,
Pascual-Gutierrez
,
J. A.
,
Wang
,
T.
,
Ni
,
C.
, and
Mathur
,
S. R.
, 2005, “
Review of Multiscale Simulation in Submicron Heat Transfer
,”
Int. J. Multiscale Comp. Eng.
,
3
(
1
), pp.
5
32.
41.
Joshi
,
A. A.
, and
Majumdar
,
A.
, 1993, “
Transient Ballistic and Diffusive Phonon Heat Transport in Thin Films
,”
J. Appl. Phys.
,
74
(
1
), pp.
31
39.
42.
Ni
,
C.
, 2009,
“Phonon Transport Models for Heat Conduction in Sub-micron Geometries with Application to Microelectronics,”
Ph.D. thesis, Purdue University, West Lafayette, IN.
43.
McGaughey
,
A. J. H.
, and
Kaviany
,
M.
, 2004,
“Quantitative Validation of the Boltzmann Transport Equation Phonon Thermal Conductivity Model Under the Single-Mode Relaxation Time Approximation,”
Phys. Rev. B
,
69
,
094303
.
44.
Reddy
,
P.
,
Castelino
,
K.
, and
Majumdar
,
A.
, 2005,
“Diffuse Mismatch Model of Thermal Boundary Conductance Using Exact Phonon Dispersion,”
Appl. Phys. Lett.
,
87
(
21
),
211908
.
45.
Bazant
,
M. Z.
,
Kaxiras
,
E.
, and
Justo
,
J. F.
, 1997,
“Environment Dependent Interatomic Potential for Bulk Silicon,”
Phys. Rev. B
,
56
(
14
), pp.
8542
8552
.
46.
Harrison
,
W. A.
, 1989,
Electronic Structure and the Properties of Solids
,
Dover
,
Mineola, NY
.
47.
Klemens
,
P. G.
, 1958,
Solid State Physics
, Vol.
7
,
F.
Seitz
and
D.
Turnbull
, eds.,
Academic
,
New York
,
p.
1
.
48.
Glassbrenner
,
C. J.
, and
Slack
,
G. A.
, 1964, “
Thermal Conductivity of Silicon and Germanium From 3 K to the Melting Point
,”
Phys. Rev.
,
134
(
4A
), pp.
A1058
A1069.
49.
Henry
,
A.
, and
Chen
,
G.
, 2008, “
Spectral Phonon Transport Properties of Silicon Based on Molecular Dynamics Simulations and Lattice Dynamics
,”
J. Comput. Theor. Nanosci.
,
5
, pp.
141
152.
50.
Turney
,
J. E.
,
McGaughey
,
A. J. H.
, and
Amon
,
C. H.
, 2009,
“Assessing the Applicability of Quantum Corrections to Classical Thermal Conductivity Predictions,”
Phys. Rev. B
,
79
,
224305
.
51.
Pascual-Gutiérrez
,
J. A.
,
Murthy
,
J. Y.
, and
Viskanta
,
R. V.
, 2009,
“Thermal Conductivity and Phonon Transport Properties of Silicon Using Perturbation Theory and the Environment-Dependent Interatomic Potential,”
J. Appl. Phys.
,
106
,
063532
.
52.
Murthy
,
J. Y.
, and
Mathur
,
S. R.
, 2002,
“Computation of Sub-Micron Thermal Transport Using an Unstructured Finite Volume Method,”
ASME J. Heat Transfer
,
124
(
6
), pp.
1176
1181
.
53.
Roe
,
P. L.
, 1986, “
Characteristic-Based Schemes for the Euler Equations
,”
Annu. Rev. Fluid Mech.
,
18
, pp.
337
365.
54.
Majumdar
,
A.
, and
Reddy
,
P.
, 2004, “
Role of Electron–Phonon Coupling in Thermal Conductance of Metal–Nonmetal Interfaces
,”
Appl. Phys. Lett.
,
84
, pp.
4768
4770.
55.
Sungtaek Ju
,
Y.
,
Hung
,
M. T.
, and
Usui
,
T.
, 2006, “
Nanoscale Heat Conduction Across Metal-Dielectric Interfaces
,”
J. Heat Transfer
,
128
(
9
), pp.
919
925.
You do not currently have access to this content.