Abstract

Understanding the mechanisms of thermally driven resonance is a key for designing many engineering and physical systems especially at small scales. This paper focuses on the modeling aspects of such phenomena using the classical Fourier diffusion theory. Critical analysis revealed that the thermally induced resonant excitation is characterized by the generation of multiple wave trains with a constant phase shift as opposed to the single standing wave generated in a mechanically driven resonant response. The hypothesis proposed herein, underpin a broad range of scientific and technological developments and the analytical treatment enables design of thermally driven resonant systems with improved performance.

References

1.
Burg
,
T. P.
,
Godin
,
M.
,
Knudsen
,
S. M.
,
Shen
,
W.
,
Carlson
,
G.
,
Foster
,
J. S.
,
Babcock
,
K.
, and
Manalis
,
S. R.
, 2007, “
Weighing of Biomolecules, Single Cells and Single Nano Particles in Fluid
,”
Nature (London)
,
446
, pp.
1066
1069
.
2.
Burg
,
T. P.
,
Sader
,
J. E.
, and
Manalis
,
S. R.
, 2009, “
Nonmonotonic Energy Dissipation in Microfluidic Resonators
,”
Phys. Rev. Lett.
,
102
, p.
228103
.
3.
Seshia
,
A. A.
,
Howe
,
R. T.
, and
Montague
,
S.
, 2002 “
An Integrated Microelectromechanical Resonant Output Gyroscope
,”
15th IEEE Micro-Electro-Mechanical Systems Conference
, pp.
722
726
.
4.
Roessig
,
T. A.
,
Howe
,
R. T.
,
Pisano
,
A. P.
, and
Smith
,
J. H.
, 1997, “
Surface Micromachined Resonant Accelerometer
,”
Int. Conf. Solid-State Sens. Actuators
,
2
, pp.
859
862
.
5.
Seshia
,
A. A.
,
Palaniapan
,
M.
,
Roessig
,
T. A.
,
Howe
,
R. T.
,
Gooch
,
R. W.
,
Schimert
,
T. R.
, and
Montague
,
S.
, 2002, “
A Vacuum Packaged Surface Micromachined Resonant Accelerometer
,”
J. Microelectromech. Syst.
,
11
(
6
), pp.
784
793
.
6.
Piazza
,
G.
,
Stephanou
,
P. J.
, and
Pisano
,
A. P.
, 2006, “
Piezoelectric Aluminum Nitride Vibrating Contour-Mode Mems Resonators
,”
J. Microelectromech. Syst.
,
16
(
6
), pp.
1406
1418
.
7.
Manzaneque
,
T.
,
Hernando
,
J.
,
Rodriguez-Aragon
,
L.
,
Ababneh
,
A.
,
Seidel
,
H.
,
Schmid
,
U.
, and
Sanchez-Rojas
,
J. L.
, 2010, “
Analysis of the Quanlity Factor of AIN-Actuated Micro-Resonators in Air and Liquid
,”
Microsyst. Technol.
,
16
(
5
), pp.
837
645
.
8.
Tanski
,
W.
, 1979, “
Surface Acoustic Wave Resonators on Quartz
,”
IEEE Trans. Sonics Ultrason.
, SU-
26
(
2
), pp.
93
104
.
9.
Tilmans
,
H. A. C.
,
Elwenspoek
,
M.
, and
Fluitman
,
J. H. J.
, 1992, “
Microresonant Force Gauges
,”
Sens. Actuators, A
,
30
(
1–2
), pp.
35
53
.
10.
Lammerink
,
T. S. J.
,
Elwenspoek
,
M.
,
Van Ouwerkerk
,
R. H.
,
Bouwstra
,
S.
, and
Fluitman
,
J. H.
, 1990, “
Performance of Thermally Excited Resonators
,”
Sens. Actuators A
,
21
(
1–3
), pp.
352
356
.
11.
Brand
,
O.
, and
Baltes
,
H.
, 1993, “
Thermally Excited Silicon Oxide Beam and Bridge Resonators in CMOS technology
,”
IEEE Trans. Electron Devices
,
40
(
10
), pp.
1745
1753
.
12.
Jiang
,
L.
,
Cheung
,
R.
,
Hedley
,
J.
,
Hassan
,
M.
,
Harris
,
A. J.
,
Burdess
,
J. S.
,
Mehregany
,
M.
, and
Zorman
,
C. A.
, 2006, “
SiC Cantilever Resonators With Electrothermal Actuation
,”
128
(
2
), pp.
376
386
.
13.
Rahafrooz
,
A.
,
Hajjam
,
A.
,
Tousifar
,
B.
, and
Pourkamali
,
S.
, 2010, “
Thermal Actuation, a Suitable Mechanism for High Frequency Electromechanical Resonators
,”
IEEE 23rd International Conference on Microelectromechanical Systems
, pp.
200
203
.
14.
Tzou
,
D. Y.
, 1992, “
Damping and Resonance Characteristics of ThermalWaves
,”
Trans. ASME
,
59
, pp.
862
867
15.
Kulish
,
V. V.
, and
Novozhilov
,
V. B.
, 2003, “
The Relationship Between the Local Temperature and the Local Heat Flux Within a One-Dimensional Semi-Infinite Domain Of Heat Wave Propagation
,”
Math. Probl. Eng.
,
2003
(
4
), pp.
173
179
.
16.
Huber
,
J. E.
,
Fleck
,
N. A.
, and
Ashby
,
M. F.
, 1997, “
The Selection of Mechanical Actuators Based on Performance
,”
Proc. R. Soc. London A
,
453
, pp.
2185
2205
.
17.
Volz
,
S.
,
Saulnier
,
J. B.
, and
Lallemand
,
M.
, 1996, “
Transient Fourier-Law Deviation by Molecular Dynamics in Solid Argon
,”
Phys. Rev. B
,
54
(
1
), pp.
340
347
.
18.
Kaminski
,
W.
, 1990, “
Hyperbolic Heat Conduction Equation for Materials With a Nonhomogeneous Inner Structure
,”
ASME J. Heat Transfer
,
112
, pp.
555
560
.
19.
Schatz
,
G. C.
, 1978, “
A Generalised Langevin Approach to Molecular Collision Dynamics
,”
Chem. Phys.
,
31
(
2
), pp.
295
307
.
20.
Toombs
,
G. A.
,
Sheard
,
F. W.
,
Neilson
,
D.
, and
Challis
,
L. J.
, 1987, “
Phonon Emission by a Hot Two-Dimensional Electron Gas in a Quantizing Magnetic Field
,”
Solid State Commun.
,
64
(
4
), pp.
577
581
.
21.
Srinivasan
,
P.
, and
Spearing
,
S. M.
, 2007, “
Materials Selection and Design of Microlectrothermal Bimaterial Actuators
,”
J. Microelectromech. Syst.
,
16
(
2
), pp.
248
259
.
22.
Srinivasan
,
P.
, 2008, “
Materials Selection for Microsystems Actuators
,” Ph.D.x thesis, pp.
164
170
.
23.
Voltera
,
E.
, and
Zachmanoglou
,
E. C.
, 1965,
Dynamics of Vibrations
,
Charles E. Merrill Books, Inc.
,
Columbus, OH
.
24.
Mader
,
M. P.
, 2000,
Condensed Matter Physics
,
John Wiley and Sons
,
New York
.
25.
Tzou
,
D. Y.
, 1996,
Macro- to Micro-scale Heat Transfer
,
Taylor & Francis
,
Washington, DC
.
26.
Xu
,
J.
, and
Wang
,
X.
, 2002, “
Simulation of Ballistic and Non-Fourier Thermal Transport in Ultra-Fast Laser Heating
,”
Physica B
,
351
, pp.
213
226
.
27.
Barletta
,
A.
, and
Zanchini
,
E.
, 1997, “
Hyperbolic Heat Conduction and Local Equilibrium: A Second Law Analysis
,”
Int. J. Heat Mass Transfer
,
40
(
5
), pp.
1007
1016
.
28.
Chen
,
G.
, 2000, “
Particularities of Heat Conduction in Nanostructures
,”
J. Nanoparticle Res.
,
2
, pp.
199
204
.
29.
Gendelman
,
O. V.
, and
Savin
,
A. V.
, 2010, “
Nonstationary Heat Conduction in One-Dimensional Chains With Conserved Momentum
,”
Phys. Rev. E
,
81
, p.
020103
.
30.
Aksamija
,
Z.
, and
Ravaioli
,
U.
, 2006, “
Joule Heating and Phonon Transport in Silicon MOSFETs
,”
J. Comput. Electron.
,
5
(
4
), pp.
431
434
.
31.
Lin
,
Z.
, and
Zhigilei
, 2008, “
Electron-Phonon Coupling and Electron Heat Capacity of Metals Under Conditions of Strong Electron-Phonon Nonequilibrium
,”
Phys. Rev. B
,
77
, p.
075133
.
32.
Tzou
,
D. Y.
, 1992, “
Thermal Resonance Under Frequency Excitation
,”
Trans. ASME
,
114
, pp.
310
316
.
33.
Biedermann
,
L. B.
,
Tung
,
R. C.
,
Raman
,
A.
, and
Reifenberger
,
R. G.
, 2009, “
Flexural Vibration Spectra of Carbon Nanotubes Measured Using Laser Doppler Vibrometry
,”
20
, p.
035702
.
34.
Huth
,
H.
,
Schnell
,
M.
,
Wittborn
,
J.
,
Ocelic
,
N.
, and
Hillenbrand
,
R.
, 2011, “
Infrared-Spectroscopic Nanoimaging With a Thermal Source
,”
Nature Mater.
,
10
, pp.
352
356
.
35.
Chou
,
J.
,
Han
,
Y.
, and
Jalali
,
B.
, 2003, “
Adaptive RF-Photonic Arbitrary Waveform Generator
,”
IEEE Photonics Technol. Lett.
,
15
(
4
), pp.
581
583
.
36.
Nguyen
,
C. T.C
, 1995, “
Micromechanical Resonators for Oscillators and Filters
,”
Proceedings of IEEE Ultrasonics Symposium
, Vol.
1
, pp.
489
499
.
37.
Ashby
,
M. F.
, 1993,
Materials Selection in Mechanical Design
, 1st ed.,
Pergamon
,
Oxford, UK
.
You do not currently have access to this content.