Fluid flow in microchannels has some characteristics, which one of them is rarefaction effect related with gas flow. In the present work, hydrodynamically and thermally fully developed laminar forced convection heat transfer of a rarefied gas flow in two microgeometries is studied, namely, microannulus and parallel plate microchannel. The rarefaction effects are taken into consideration using first-order slip velocity and temperature jump boundary conditions. Viscous heating is also included for either the wall heating or the wall cooling case. Closed form expressions are obtained for dimensionless temperature distribution and Nusselt number. The results demonstrate that for both geometries, as Brinkman number increases, the Nusselt number decreases. However, the effect of viscous heating on the Nusselt number at greater values of Knudsen number becomes insignificant. In the absence of viscous heating, increasing values of Knudsen number lead to smaller values of Nusselt number. Furthermore, it is observed that viscous heating causes singularities in Nusselt number values. Also, asymmetry causes singularities in Nusselt numbers of both microannulus walls and the parallel plate wall having lower heat flux, even in the absence of viscous heating. For parallel plate microchannel, in the absence of viscous heating, Nusselt number of the wall having larger heat flux is an increasing function of the wall heat fluxes ratio.

1.
Harley
,
J.
,
Huang
,
Y.
,
Bau
,
H.
, and
Zemel
,
J. N.
, 1995, “
Gas Flow in Microchannels
,”
J. Fluid Mech.
0022-1120,
284
, pp.
257
274
.
2.
Araki
,
T.
,
Kim
,
M. S.
,
Hiroshi
,
I.
, and
Suzuki
,
K.
, 2002, “
An Experimental Investigation of Gaseous Flow Characteristics in Microchannels
,”
Microscale Thermophys. Eng.
1089-3954,
6
, pp.
117
130
.
3.
Arkilic
,
E. B.
,
Breuer
,
K. S.
, and
Schmidt
,
M. A.
, 1997, “
Gaseous Slip Flow in Long Microchannels
,”
J. Microelectromech. Syst.
1057-7157,
6
, pp.
167
178
.
4.
Arkilic
,
E. B.
,
Breuer
,
K. S.
, and
Schmidt
,
M. A.
, 2001, “
Mass Flow and Tangential Momentum Accommodation in Silicon Micromachined Channels
,”
J. Fluid Mech.
0022-1120,
437
, pp.
29
43
.
5.
Liu
,
J.
,
Tai
,
Y. C.
, and
Ho
,
C. M.
, 1995, “
MEMS for Pressure Distribution Studies of Gaseous Flows in Microchannels
,”
Proceedings of IEEE, International Conference on Micro Electro Mechanical Systems
, Amsterdam, Netherlands, pp.
209
215
.
6.
Choi
,
S. B.
,
Barron
,
R. F.
, and
Warrington
,
R. O.
, 1991, “
Fluid Flow and Heat Transfer in Microtubes
,”
Proceedings of Micromechanical Sensors, Actuators, and Systems
,
ASME
,
New York
, Vol.
32
, pp.
123
134
.
7.
Kandlikar
,
S. G.
,
Garimella
,
S.
,
Li
,
D.
,
Colin
,
S.
, and
King
,
M. R.
, 2006,
Heat Transfer and Fluid Flow in Minichannels and Microchannels
,
Elsevier
,
Oxford, U.K.
8.
Beskok
,
A.
, and
Karniadakis
,
G. E.
, 1994, “
Simulation of Heat and Momentum Transfer in Complex Micro-Geometries
,”
J. Thermophys. Heat Transfer
0887-8722,
8
, pp.
647
655
.
9.
Taheri
,
P.
,
Torrilhon
,
M.
, and
Struchtrup
,
H.
, 2009, “
Couette and Poiseuille Microflows: Analytical Solutions for Regularized 13-Moment Equations
,”
Phys. Fluids
1070-6631,
21
, p.
017102
.
10.
Hadjiconstantinou
,
N. G.
, 2006, “
The Limits of Navier Stokes Theory and Kinetic Extensions for Describing Small Scale Gaseous Hydrodynamics
,”
Phys. Fluids
1070-6631,
18
, p.
111301
.
11.
Kennard
,
E. H.
, 1938,
Kinetic Theory of Gases
,
McGraw–Hill
,
New York
.
12.
Ebert
,
W. A.
, and
Sparrow
,
E. M.
, 1965, “
Slip Flow in Rectangular and Annular Ducts
,”
ASME J. Basic Eng.
0021-9223,
87
, pp.
1018
1024
.
13.
Duan
,
Z.
, and
Muzychka
,
Y. S.
, 2007, “
Slip Flow in Elliptic Microchannels
,”
Int. J. Therm. Sci.
1290-0729,
46
, pp.
1104
1111
.
14.
Ameel
,
T. A.
,
Wang
,
X. M.
,
Baron
,
R. F.
, and
Warrington
,
R. O.
, 1997, “
Laminar Forced Convection in a Circular Tube With Constant Heat Flux and Slip Flow
,”
Microscale Thermophys. Eng.
1089-3954,
1
(
4
), pp.
303
320
.
15.
Zhu
,
X.
,
Xin
,
M. D.
, and
Liao
,
Q.
, 2002, “
Analysis of Heat Transfer Between Two Unsymmetrically Heated Parallel Plates With Microspacing in the Slip Flow Regime
,”
Microscale Thermophys. Eng.
1089-3954,
6
, pp.
287
301
.
16.
Tunc
,
G.
, and
Bayazitoglu
,
Y.
, 2002, “
Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
765
773
.
17.
Sadeghi
,
A.
,
Asgarshamsi
,
A.
, and
Saidi
,
M. H.
, 2009, “
Analysis of Laminar Flow in the Entrance Region of Parallel Plate Microchannels for Slip Flow
,”
Proceedings of the Seventh International ASME Conference on Nanochannels, Microchannels and Minichannels, ICNMM2009
, Pohang, South Korea.
18.
Al-Nimr
,
M. A.
,
Maqableh
,
M.
,
Khadrawi
,
A. F.
, and
Ammourah
,
S. A.
, 2009, “
Fully Developed Thermal Behaviors for Parallel Flow Microchannel Heat Exchanger
,”
Int. Commun. Heat Mass Transfer
0735-1933,
36
, pp.
385
390
.
19.
Sun
,
W.
,
Kakac
,
S.
, and
Yazicioglu
,
A. G.
, 2007, “
A Numerical Study of Single-Phase Convective Heat Transfer in Microtubes for Slip Flow
,”
Int. J. Therm. Sci.
1290-0729,
46
, pp.
1084
1094
.
20.
Renksizbulut
,
M.
,
Niazmand
,
H.
, and
Tercan
,
G.
, 2006, “
Slip-Flow and Heat Transfer in Rectangular Microchannels With Constant Wall Temperature
,”
Int. J. Therm. Sci.
1290-0729,
45
, pp.
870
881
.
21.
Renksizbulut
,
M.
, and
Niazmand
,
H.
, 2006, “
Laminar Flow and Heat Transfer in the Entrance Region of Trapezoidal Channels With Constant Wall Temperature
,”
ASME J. Heat Transfer
0022-1481,
128
, pp.
63
74
.
22.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2003, “
Liquid Flow in Microchannels: Experimental Observations and Computational Analyses of Microfluidics Effects
,”
J. Micromech. Microeng.
0960-1317,
13
, pp.
568
579
.
23.
Koo
,
J.
, and
Kleinstreuer
,
C.
, 2004, “
Viscous Dissipation Effects in Microtubes and Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3159
3169
.
24.
El-Genk
,
M. S.
, and
Yang
,
I. H.
, 2008, “
Friction Numbers and Viscous Dissipation Heating for Laminar Flows of Water in Microtubes
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
082405
.
25.
Tunc
,
G.
, and
Bayazitoglu
,
Y.
, 2001, “
Heat Transfer in Microtubes With Viscous Dissipation
,”
Int. J. Heat Mass Transfer
0017-9310,
44
, pp.
2395
2403
.
26.
Aydin
,
O.
, and
Avci
,
M.
, 2007, “
Analysis of Laminar Heat Transfer in Micro-Poiseuille Flow
,”
Int. J. Therm. Sci.
1290-0729,
46
, pp.
30
37
.
27.
Jeong
,
H. E.
, and
Jeong
,
J. T.
, 2006, “
Extended Graetz Problem Including Streamwise Conduction and Viscous Dissipation in Microchannel
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
2151
2157
.
28.
Jiji
,
L. M.
, 2008, “
Effect of Rarefaction, Dissipation, and Accommodation Coefficients on Heat Transfer in Microcylindrical Couette Flow
,”
ASME J. Heat Transfer
0022-1481,
130
, p.
042404
.
29.
Adams
,
T. M.
,
Abdel-Khalik
,
S. I.
,
Jeter
,
S. M.
, and
Qureshi
,
Z. H.
, 1998, “
An Experimental Investigation of Single Phase Forced Convection in Microchannels
,”
Int. J. Heat Mass Transfer
0017-9310,
41
, pp.
851
857
.
30.
Duan
,
Z.
, and
Muzychka
,
Y. S.
, 2008, “
Slip Flow Heat Transfer in Annular Microchannels With Constant Heat Flux
,”
ASME J. Heat Transfer
0022-1481,
130
(
9
), p.
092401
.
31.
Avci
,
M.
, and
Aydin
,
O.
, 2008, “
Laminar Forced Convection Slip-Flow in a Micro-Annulus Between Two Concentric Cylinders
,”
Int. J. Heat Mass Transfer
0017-9310,
51
, pp.
3460
3467
.
32.
Beskok
,
A.
,
Karniadakis
,
G. E.
, and
Trimmer
,
W.
, 1996, “
Rarefaction and Compressibility Effects in Gas Microflows
,”
ASME J. Fluids Eng.
0098-2202,
118
, pp.
448
456
.
33.
Schaaf
,
S. A.
, 1963, “
Mechanics of Rarefied Gases
,”
Encyclopedia of Physics, Fluid Dynamics II
, Vol.
VII/2
,
Springer
,
Berlin
, pp.
591
624
.
34.
Sharipov
,
F.
, and
Seleznev
,
V.
, 1998, “
Data on Internal Rarefied Gas Flows
,”
J. Phys. Chem. Ref. Data
0047-2689,
27
(
3
), pp.
657
706
.
35.
Bejan
,
A.
, 1984,
Convection Heat Transfer
,
Wiley
,
New York
.
36.
Barron
,
R. F.
,
Wang
,
X.
,
Ameel
,
T. A.
, and
Warrington
,
R. O.
, 1997, “
The Graetz Problem Extended to Slip Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
40
(
8
), pp.
1817
1823
.
You do not currently have access to this content.