Fibrous material is a complex porous medium and steady test methods are the main test approaches we currently depend on to study the heat transfer properties. The application of unsteady test methods on fibrous material is still not mature. In this paper, some systematic studies are taken to investigate this problem. By analyzing the main factors impacting the test results, it is found that the local heat convection potentially excited by imposing test temperature can be avoided by limiting the internal temperature gradient and the so-called dual-phase lagging effects are negligible so that the feasibility of the unsteady test method is verified via both theoretical analysis and experimental data.

1.
Pan
,
N.
,
He
,
J.
, and
Yu
,
J.
, 2007, “
Fibrous Materials as Soft Matter
,”
Text. Res. J.
0040-5175,
77
(
4
), pp.
205
213
.
2.
Layeghi
,
M.
, 2008, “
Numerical Analysis of Wooden Porous Media Effects on Heat Transfer From a Staggered Tube Bundle
,”
ASME J. Heat Transfer
0022-1481,
130
(
1
), p.
014501
.
3.
Sakamoto
,
H.
, and
Kulacki
,
F. A.
, 2008, “
Effective Thermal Diffusivity of Porous Media in the Wall Vicinity
,”
ASME J. Heat Transfer
0022-1481,
130
(
2
), p.
022601
.
4.
Rencz
,
M.
, 2003, “
New Possibilities in the Thermal Evaluation, Offered by Transient Testing
,”
Microelectron. J.
0026-2692,
34
(
3
), pp.
171
177
.
5.
Li
,
C. H.
,
Williams
,
W.
,
Buongiorno
,
J.
,
Hu
,
L.-W.
, and
Peterson
,
G. P.
, 2008, “
Transient and Steady-State Experimental Comparison Study of Effective Thermal Conductivity of Al2O3/Water Nanofluids
,”
ASME J. Heat Transfer
0022-1481,
130
(
4
), p.
042407
.
6.
Wang
,
M.
, and
Pan
,
N.
, 2008, “
Modeling and Prediction of the Effective Thermal Conductivity of Random Open-Cell Porous Foams
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
5–6
), pp.
1325
1331
.
7.
Wang
,
M.
,
Wang
,
J.
,
Pan
,
N.
, and
Chen
,
S.
, 2007, “
Mesoscopic Predictions of the Effective Thermal Conductivity for Microscale Random Porous Media
,”
Phys. Rev. E
1063-651X,
75
(
3
), p.
036702
.
8.
Wang
,
M.
, and
Pan
,
N.
, 2008, “
Predictions of Effective Physical Properties of Complex Multiphase Materials
,”
Mater. Sci. Eng. R.
0927-796X,
63
(
1
), pp.
1
30
.
9.
Christon
,
M.
,
Burns
,
P. J.
, and
Sommerfeld
,
R. A.
, 1994, “
Quasi-Steady Temperature Gradient Metamorphism in Idealized Dry Snow
,”
Numer. Heat Transfer, Part A
1040-7782,
25
(
3
), pp.
259
278
.
10.
Wang
,
J.
,
Carson
,
J. K.
,
North
,
M. F.
, and
Cleland
,
D. J.
, 2006, “
A New Approach to Modelling the Effective Thermal Conductivity of Heterogeneous Materials
,”
Int. J. Heat Mass Transfer
0017-9310,
49
, pp.
3075
3083
.
11.
Rocha
,
R. P. A.
, and
Cruz
,
M. E.
, 2001, “
Computation of the Effective Conductivity of Unidirectional Fibrous Composites With an Interfacial Thermal Resistance
,”
Numer. Heat Transfer Part A
,
39
(
2
), pp.
179
203
. 0002-7820
12.
Fu
,
S.
, and
Mai
,
Y.
, 2003, “
Thermal Conductivity of Misaligned Short-Fiber-Reinforced Polymer Composites
,”
J. Appl. Polym. Sci.
0021-8995,
88
, pp.
1497
1505
.
13.
Zou
,
M. Q.
,
Yu
,
B.
,
Zhang
,
D.
, and
Ma
,
Y.
, 2003, “
Study on Optimization of Transverse Thermal Conductivities of Unidirectional Composites
,”
ASME J. Heat Transfer
0022-1481,
125
(
6
), pp.
980
987
.
14.
Ning
,
Q. G.
, and
Chou
,
T. W.
, 1995, “
Closed-Form Solutions of the Inplane Effective Thermal-Conductivities of Woven-Fabric Composites
,”
Compos. Sci. Technol.
0266-3538,
55
(
1
), pp.
41
48
.
15.
Dasgupta
,
A.
,
Agarwal
,
R. K.
, and
Bhandarkar
,
S. M.
, 1996, “
Three-Dimensional Modeling of Woven-Fabric Composites for Effective Thermo-Mechanical and Thermal Properties
,”
Compos. Sci. Technol.
0266-3538,
56
(
3
), pp.
209
223
.
16.
Woo
,
S. S.
,
Shalev
,
I.
, and
Barker
,
R. L.
, 1994, “
Heat and Moisture Transfer Through Nonwoven Fabrics. I. Heat Transfer
,”
Text. Res. J.
0040-5175,
64
(
3
), pp.
149
162
.
17.
Wang
,
M.
,
He
,
J.
,
Yu
,
J.
, and
Pan
,
N.
, 2007, “
Lattice Boltzmann Modeling of the Effective Thermal Conductivity for Fibrous Materials
,”
Int. J. Therm. Sci.
1290-0729,
46
, pp.
848
855
.
18.
Huang
,
J.
, 2006, “
Sweating Guarded Hot Plate Test Method
,”
Polym. Test.
0142-9418,
25
, pp.
709
716
.
19.
Mathis
,
N.
, and
Chandler
,
C.
, 2000, “
Orientation and Position Dependant Thermal Conductivity
,”
J. Cellular Plastics
,
36
(
4
), pp.
327
336
.
20.
Martin
,
J. R.
, and
Lamb
,
G. E. R.
, 1987, “
Measurement of Thermal Conductivity of Nonwovens Using a Dynamic Method
,”
Text. Res. J.
0040-5175,
57
(
12
), pp.
721
727
.
21.
Schneider
,
A. M.
, and
Hoschke
,
B. N.
, 1992, “
Heat Transfer Through Moist Fabrics
,”
Text. Res. J.
0040-5175,
62
(
2
), pp.
61
66
.
22.
Jirsak
,
O.
,
Gok
,
T.
,
Ozipek
,
B.
, and
Pan
,
N.
, 1998, “
Comparing Dynamic and Static Methods for Measuring Thermal Conductive Properties of Textiles
,”
Text. Res. J.
0040-5175,
68
(
1
), pp.
47
56
.
23.
Jirsak
,
O.
,
Sadikoglu
,
T. G.
,
Ozipek
,
B.
, and
Pan
,
N.
, 2000, “
Thermo-Insulating Properties of Perpendicular-Laid Versus Cross-Laid Lofty Nonwoven Fabrics
,”
Text. Res. J.
0040-5175,
70
(
2
), pp.
121
128
.
24.
Pakdee
,
W.
, and
Rattanadecho
,
P.
, 2006, “
Unsteady Effects on Natural Convective Heat Transfer Through Porous Media in Cavity Due to Top Surface Partial Convection
,”
Appl. Therm. Eng.
1359-4311,
26
, pp.
2316
2326
.
25.
Sun
,
G.
,
Yoo
,
H. S.
,
Zhang
,
X. S.
, and
Pan
,
N.
, 2000, “
Radiant Protective and Transport Properties of Fabrics Used by Wildland Firefighters
,”
Text. Res. J.
0040-5175,
70
(
7
), pp.
567
573
.
26.
Tzou
,
D.
, 1995, “
A Unified Field Approach for Heat Conduction From Macro- to Micro-Scales
,”
ASME J. Heat Transfer
0022-1481,
117
(
1
), pp.
8
16
.
27.
Wang
,
L.
, and
Wei
,
X.
, 2008, “
Equivalence Between Dual-Phase-Lagging and Two-Phase-System Heat Conduction Processes
,”
Int. J. Heat Mass Transfer
0017-9310,
51
(
7–8
), pp.
1751
1756
.
28.
Zuo
,
L.
,
Zhu
,
S.
, and
Pan
,
N.
, 2009, “
Determination of Sample Size for Step-Wise Transient Thermal Tests
,”
Polym. Test.
0142-9418,
28
, pp.
307
314
.
29.
Minkowycz
,
W.
,
Haji-Sheikh
,
A.
, and
Vafai
,
K.
, 1999, “
On Departure From Local Thermal Equilibrium in Porous Media Due to a Rapidly Changing Heat Source: The Sparrow Number
,”
Int. J. Heat Mass Transfer
0017-9310,
42
(
18
), pp.
3373
3385
.
30.
Kubicár
,
L.
, and
Bohác
,
V.
, 2000, “
A Step-Wise Method for Measuring Thermophysical Parameters of Materials
,”
Meas. Sci. Technol.
0957-0233,
11
, pp.
252
258
.
31.
Kubičár
,
L.
,
Boháč
,
V.
, and
Vretenár
,
V.
, 2002, “
Transient Methods for the Measurement of Thermophysical Properties: The Pulse Transient Method
,”
High Temp. - High Press.
0018-1544,
34
(
5
), pp.
505
514
.
32.
Milano
,
G.
,
Scarpa
,
F.
,
Righini
,
F.
, and
Bussolino
,
G. C.
, 2001, “
Ten Years of Parameter Estimation Applied to Dynamic Thermophysical Property Measurements
,”
Int. J. Thermophys.
0195-928X,
22
(
4
), pp.
1227
1240
.
33.
Papa
,
J.
,
Albano
,
C.
,
Baré
,
W.
,
Navarro
,
O.
,
Galárraga
,
D.
, and
Zannin
,
F.
, 2002, “
An Unsteady State Method for the Measurement of Polymer Thermal Diffusivity I. Development of a Cell
,”
Eur. Polym. J.
0014-3057,
38
(
10
), pp.
2109
2117
.
34.
Hammerschmidt
,
U.
, 2004, “
Quasi-Steady State Method: Uncertainty Assessment
,”
Int. J. Thermophys.
0195-928X,
25
(
4
), pp.
1163
1185
.
35.
Kalogiannakis
,
G.
,
Hemelrijck
,
D. V.
, and
Assche
,
G. V.
, 2004, “
Measurements of Thermal Properties of Carbon/Epoxy and Glass/Epoxy Using Modulated Temperature Differential Scanning Calorimetry
,”
J. Compos. Mater.
0021-9983,
38
(
2
), pp.
163
175
.
36.
Boháč
,
V.
,
Dieška
,
P.
, and
Kubičár
,
L.
, 2007, “
The Heat Loss Effect at the Measurements by Transient Pulse Method
,”
Measurement
0263-2241,
7
(
3
), pp.
24
27
.
37.
Gutierrez
,
G.
, and
Rodriguez
,
R.
, 2007, “
Conductivity Measurement of Ferrofluid Using Transient Hot Wire Method
,”
ASME International Mechanical Engineering Congress and Exposition
, Seattle, WA.
38.
Bai
,
S.-Y.
,
Tang
,
Z.-A.
,
Huang
,
Z.-X.
,
Yu
,
J.
, and
Wang
,
J.-Q.
, 2008, “
Thermal Conductivity Measurement of Submicron-Thick Aluminium Oxide Thin Films by a Transient Thermo-Reflectance Technique
,”
Chin. Phys. Lett.
0256-307X,
25
(
2
), pp.
593
596
.
39.
Solorzano
,
E.
,
Rodriguez-Perez
,
M. A.
, and
de Saja
,
J. A.
, 2008, “
Thermal Conductivity of Cellular Metals Measured by the Transient Plane Sour Method
,”
Adv. Eng. Mater.
1438-1656,
10
(
4
), pp.
371
377
.
40.
Sabuga
,
W.
, and
Hammerschmidt
,
U.
, 1995, “
A New Method for the Evaluation of Thermal Conductivity and Thermal Diffusivity From Transient Hot Strip Measurements
,”
Int. J. Thermophys.
0195-928X,
16
(
2
), pp.
557
565
.
41.
Bohac
,
V.
,
Kubicar
,
L.
, and
Vretenar
,
V.
, 2003, “
Use of the Pulse Transient Method to Investigate the Thermal Properties of Two Porous Materials
,”
High Temp. - High Press.
0018-1544,
35–36
(
1
), pp.
67
74
.
42.
Holman
,
J. P.
, 1997,
Heat Transfer
,
McGraw-Hill
,
New York
.
43.
Tye
,
R. P.
,
Kubičár
,
L.
, and
Lockmuller
,
N.
, 2005, “
The Development of a Standard for Contact Transient Methods of Measurement of Thermophysical Properties
,”
Int. J. Thermophys.
0195-928X,
26
(
6
), pp.
1917
1938
.
You do not currently have access to this content.