Abstract

This paper attempts to provide a detailed insight into the heat transfer and aerodynamic behavior of a separation zone that is generated as a result of boundary layer development along the suction surface of a highly loaded low pressure turbine blade. This paper experimentally investigates the individual and combined effects of periodic unsteady wake flows and freestream turbulence intensity (Tu) on heat transfer and aerodynamic behavior of the separation zone. Heat transfer experiments were carried out at Reynolds numbers of 110,000, 150,000, and 250,000 based on the suction surface length and the cascade exit velocity. Aerodynamic experiments were performed at Re=110,000. For the above Re numbers, the experimental matrix includes Tu’s of 1.9%, 3.0%, 8.0%, and 13.0% and three different unsteady wake frequencies with the steady inlet flow as the reference configuration. Detailed heat transfer and boundary layer measurements are performed with particular attention paid to the heat transfer and aerodynamic behavior of the separation zone at different Tu’s at steady and periodic unsteady flow conditions. The objectives of the research are (a) to quantify the effect of Tu on the aerothermal behavior of the separation bubble at steady inlet flow conditions, (b) to investigate the combined effects of Tu and the unsteady wake flow on the aerothermal behavior of the separation bubble, and (c) to provide a complete set of heat transfer and aerodynamic data for numerical simulation that incorporates Navier–Stokes and energy equations. The experimental investigations were performed in a large-scale, subsonic, unsteady turbine cascade research facility at the Turbomachinery Performance and Flow Research Laboratory of Texas A&M University.

References

1.
Schobeiri
,
M. T.
,
Öztürk
,
B.
, and
Ashpis
,
D.
, 2005, “
On the Physics of the Flow Separation Along a Low Pressure Turbine Blade Under Unsteady Flow Conditions
,”
ASME Trans. J. Fluids Eng.
0098-2202,
127
, pp.
503
513
.
2.
Schobeiri
,
M. T.
, and
Öztürk
,
B.
, 2004, “
Experimental Study of the Effect of the Periodic Unsteady Wake Flow on Boundary Layer Development, Separation, and Re-attachment Along the Surface of a Low Pressure Turbine Blade
,”
ASME J. Turbomach.
0889-504X,
126
(
9
), pp.
663
676
.
3.
Schobeiri
,
M. T.
,
Öztürk
,
B.
, and
Ashpis
,
D.
, 2005, “
Effect of Reynolds Number and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Re-attachment Along the Suction Surface of a Low Pressure Turbine Blade
,” pp.
991
-
1010
ASME Paper No. GT2005-68600.
4.
Schobeiri
,
M. T.
,
Öztürk
,
B.
, and
Ashpis
,
D.
, 2005, “
Intermittent Behavior of the Separated Boundary Layer Along the Suction Surface of a Low Pressure Turbine Blade Under Periodic Unsteady Flow Conditions
,” pp.
1011
-
1027
ASME Paper No. GT2005-68603.
5.
Öztürk
,
B.
, and
Schobeiri
,
M. T.
, 2006, “
Effect of Turbulence Intensity and Periodic Unsteady Wake Flow Condition on Boundary Layer Development, Separation, and Re-attachment Over the Separation Bubble Along the Suction Surface of a Low Pressure Turbine Blade
,” ASME Paper No. GT2006-91293.
6.
Kaszeta
,
R. W.
, and
Simon
,
T. W.
, 2002, “
Experimental Investigation of Transition to Turbulence as Affected by Passing Wakes
,” NASA/CR Paper No. 2002-212104.
7.
Wolf
,
W.
,
Homeyer
,
Lars.
, and
Fottner
,
L.
, 2001, “
Experimental Investigation of Heat Transfer in Separated Flow on a Highly Loaded Lp-Turbine Cascade
,”
Proceeding of the RTO/AVT Symposium and Specialists Meeting Heat Transfer and Cooling in Propulsion and Power Systems
,
Loen, Norway
, May 7–11.
8.
de la Calzada
,
P.
, and
Alonso
,
A.
, 2005, “
Numerical Investigation of Heat Transfer in Turbine Cascades With Separated Flows
,” ASME Paper No. GT-2002-30225.
9.
Han
,
J.-C.
, “
Gas Turbine Heat Transfer Laboratory
,” private communication.
10.
Ameri
,
A.
, NASA Glenn Research Center, private communication.
11.
Schobeiri
,
M. T.
, and
Chakka
,
P.
, 2002, “
Prediction of Turbine Blade Heat Transfer and Aerodynamics Using Unsteady Boundary Layer Transition Model
,”
Int. J. Heat Mass Transfer
0017-9310,
45
, pp.
815
829
.
12.
Han
,
J.-C.
,
Zhang
,
L.
, and
Ou
,
S.
, 1993, “
Influence of Unsteady Wake on Heat Transfer Coefficient From a Gas Turbine Blade
,”
ASME J. Heat Transfer
0022-1481,
115
, pp.
904
911
.
13.
Dullenkopf
,
K.
, and
Mayle
,
R. E.
, 1994, “
The Effect of Incident Turbulence and Moving Wakes on Laminar Heat Transfer in Gas Turbines
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
23
28
.
14.
Magari
,
P. J.
, and
LaGraff
,
L. E.
, 1994, “
Wake-Induced Unsteady Stagnation-Region Heat Transfer Measurements
,”
ASME J. Turbomach.
0889-504X,
116
, pp.
29
38
.
15.
Goldstein
,
R. J.
, 1971,
Film Cooling
(
Advances in Heat Transfer
)
T. F.
Irvin
and
J. P.
Hartnett
, eds.,
Academic
,
New York
, Vol.
7
, pp.
321
379
.
16.
Han
,
J. C.
,
Dutta
,
S.
, and
Ekkad
,
S. V.
, 2000,
Gas Turbine Heat Transfer and Cooling Technology
,
Taylor & Francis
,
London
.
17.
Choi
,
J.
,
Teng
,
S.
,
Han
,
J.-C.
, and
Ladeinde
,
F.
, 2004, “
Effect of Free-Stream Turbulence on Blade Heat Transfer and Pressure Coefficients in Low Reynold Number Flow
,”
Int. J. Heat Mass Transfer
0017-9310,
47
, pp.
3441
3452
.
18.
Schobeiri
,
M. T.
,
John
,
J.
, and
Pappu
,
K.
, 1996, “
Development of Two-Dimensional Wakes Within Curved Channels, Theoretical Framework and Experimental Investigation
,”
ASME J. Turbomach.
0889-504X,
118
, pp.
506
518
.
19.
Schobeiri
,
M. T.
, and
Öztürk
,
B.
, 2004, “
Turbulence Development and Decay Upstream of the LPT-Cascade
,” NASA GRC LPT-Project Progress Report No. 2004-2;
NASA GRC Report No. 32525-61640 ME.
20.
Bruun
,
H. H.
, 1995,
Hot-Wire Anemometry
,
Oxford University Press
,
Oxford
.
21.
Barrett
,
M. J.
, and
Hollingsworth
,
D. K.
, 2001, “
On the Calculation of Length, Scales for Turbulent Heat Transfer Correlation
,”
J. Heat Transfer
0022-1481,
123
, pp.
232
241
.
22.
Hinze
,
J. O.
, 1975,
Turbulence
, 2nd ed.,
McGraw-Hill
,
New York
.
23.
Wright
,
L.
, and
Schobeiri
,
M. T.
, 1999, “
The Effect of Periodic Unsteady Flow on Boundary Layer and Heat Transfer on a Curved Surface
,”
ASME Trans. J. Heat Transfer
0022-1481,
120
, pp.
22
33
.
24.
Kline
,
S. J.
, and
McKlintock
,
F. A.
, 1953, “
Describing Uncertainties in Single-Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
25.
Hourmouziadis
,
J.
, 1989,
Blading Design for Axial Turbomachines
(
Lecture Series LS-167
), AGARD.
26.
Eifler
,
J.
, 1975, “
Zur Frage der Freien Turbulenten Strömungen, Insbesondere Hinter Ruhenden und Bewegten Zylindern
,” dissertation, Technische Hochschule Darmstadt, Germany.
27.
Bons
,
J. P.
,
Sondergaard
,
R.
, and
Rivir
,
R. B.
, 2001, “
The Fluid Dynamics of LPT Blade Separation Control Using Pulsed Jets
,” pp.
77
-
85
ASME Paper No. 2001-GT-190.
28.
Roberts
,
S. K.
, and
Yaras
,
M. I.
, 2003, “
Effects of Periodic-Unsteadiness, Free-Stream Turbulence and Flow Reynolds Number on Separation-Bubble Transition
,” ASME Paper No. GT-2003-38262 pp.
745
-
759
.
29.
Herbst
,
R.
, 1980, “
Entwicklung von Strömungsgrenzschichten bei Instationärer Zuströmung in Turbomaschinen
,” dissertation, Technische Hochschule Darmstadt, Germany.
30.
Pfeil
,
H.
,
Herbst
,
R.
, and
Schröder
,
T.
, 1983, “
Investigation of the Laminar-Turbulent Transition of Boundary Layers Disturbed by Wakes
,”
ASME J. Eng. Power
0022-0825,
105
, pp.
130
137
.
31.
Schobeiri
,
M. T.
, and
Radke
,
R.
, 1994, “
Effects of Periodic Unsteady Wake Flow and Pressure Gradient on Boundary Layer Transition Along the Concave Surface of A Curved Plate
,” ASME Paper No. 94-GT-327.
32.
Halstead
,
D. E.
,
Wisler
,
D. C.
,
Okiishi
,
T. H.
,
Walker
,
G. J.
,
Hodson
,
H. P.
, and
Shin
,
H.-W.
, 1997, “
Boundary Layer Development in Axial Compressors and Turbines: Part 3 of 4
,”
ASME J. Turbomach.
0889-504X,
119
, pp.
225
237
.
33.
Giel
,
P. W.
,
Van Fossen
,
G. J.
,
Boyle
,
R. J.
,
Thurman
,
D. R.
, and
Civinskas
,
K. C.
, 1999, “
Blade Heat Transfer Measurements and Predictions in a Transonic Turbine Cascade
,” ASME Paper No. 99-GT-125.
34.
Giel
,
P. W.
,
Bunker
,
R. S.
,
Van Fossen
,
G. J.
, and
Boyle
,
R. J.
, 2000, “
Heat Transfer Measurements and Predictions on a Power Generation Gas Turbine Blade
,” ASME Paper No. 2000-GT-0209.
35.
Arts
,
T.
,
Lambert de Rouvroit
,
M.
, and
Rutherford
,
A. W.
, 1990, “
Aero-Thermal Investigation of a Highly Loaded Transonic Linear Turbine Guide Vane Cascade
,” VKI Technical Note 174.
36.
Boyle
,
R. J.
,
Ames
,
F.
, and
Giel
,
P.
, 2004, “
Predictions for the Effects of Freestream Turbulence on Turbine Blade Heat Transfer
,” ASME Paper No. GT2004-54332.
You do not currently have access to this content.