Nanofluids are engineered colloids made of a base fluid and nanoparticles . Nanofluids have higher thermal conductivity and single-phase heat transfer coefficients than their base fluids. In particular, the heat transfer coefficient increases appear to go beyond the mere thermal-conductivity effect, and cannot be predicted by traditional pure-fluid correlations such as Dittus-Boelter’s. In the nanofluid literature this behavior is generally attributed to thermal dispersion and intensified turbulence, brought about by nanoparticle motion. To test the validity of this assumption, we have considered seven slip mechanisms that can produce a relative velocity between the nanoparticles and the base fluid. These are inertia, Brownian diffusion, thermophoresis, diffusiophoresis, Magnus effect, fluid drainage, and gravity. We concluded that, of these seven, only Brownian diffusion and thermophoresis are important slip mechanisms in nanofluids. Based on this finding, we developed a two-component four-equation nonhomogeneous equilibrium model for mass, momentum, and heat transport in nanofluids. A nondimensional analysis of the equations suggests that energy transfer by nanoparticle dispersion is negligible, and thus cannot explain the abnormal heat transfer coefficient increases. Furthermore, a comparison of the nanoparticle and turbulent eddy time and length scales clearly indicates that the nanoparticles move homogeneously with the fluid in the presence of turbulent eddies, so an effect on turbulence intensity is also doubtful. Thus, we propose an alternative explanation for the abnormal heat transfer coefficient increases: the nanofluid properties may vary significantly within the boundary layer because of the effect of the temperature gradient and thermophoresis. For a heated fluid, these effects can result in a significant decrease of viscosity within the boundary layer, thus leading to heat transfer enhancement. A correlation structure that captures these effects is proposed.
Skip Nav Destination
Article navigation
Research Papers
Convective Transport in Nanofluids
J. Buongiorno
J. Buongiorno
Nuclear Science and Engineering Department,
Massachusetts Institute of Technology
, 77 Massachusetts Avenue, Cambridge, MA 02139-4307
Search for other works by this author on:
J. Buongiorno
Nuclear Science and Engineering Department,
Massachusetts Institute of Technology
, 77 Massachusetts Avenue, Cambridge, MA 02139-4307J. Heat Transfer. Mar 2006, 128(3): 240-250 (11 pages)
Published Online: August 15, 2005
Article history
Received:
March 7, 2005
Revised:
August 15, 2005
Citation
Buongiorno, J. (August 15, 2005). "Convective Transport in Nanofluids." ASME. J. Heat Transfer. March 2006; 128(3): 240–250. https://doi.org/10.1115/1.2150834
Download citation file:
Get Email Alerts
Cited By
Entropic Analysis of the Maximum Output Power of Thermoradiative Cells
J. Heat Mass Transfer
Molecular Dynamics Simulations in Nanoscale Heat Transfer: A Mini Review
J. Heat Mass Transfer
Related Articles
Heat Transfer Augmentation of Aqueous Suspensions of Nanodiamonds in Turbulent Pipe Flow
J. Heat Transfer (April,2009)
Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes
J. Heat Transfer (April,2008)
Thermal Conductivity Equations Based on Brownian Motion in Suspensions of Nanoparticles (Nanofluids)
J. Heat Transfer (April,2008)
Thermal
and Hydraulic Performance of Counterflow Microchannel Heat Exchangers With and Without
Nanofluids
J. Heat Transfer (August,2011)
Related Proceedings Papers
Related Chapters
An Approach for Optimizing Thermal Conductivity in Nanofluids
Inaugural US-EU-China Thermophysics Conference-Renewable Energy 2009 (UECTC 2009 Proceedings)