Experimental results, measured on dimpled test surfaces placed on one wall of different rectangular channels, are given for a ratio of air inlet stagnation temperature to surface temperature of approximately 0.94, and Reynolds numbers based on channel height from 9940 to 74,800. The data presented include friction factors, local Nusselt numbers, spatially averaged Nusselt numbers, and globally averaged Nusselt numbers. The ratios of dimple depth to dimple print diameter δD are 0.1, 0.2, and 0.3 to provide information on the influences of dimple depth. The ratio of channel height to dimple print diameter is 1.00. At all Reynolds numbers considered, local spatially resolved and spatially averaged Nusselt number augmentations increase as dimple depth increases (and all other experimental and geometric parameters are held approximately constant). These are attributed to (i) increases in the strengths and intensity of vortices and associated secondary flows ejected from the dimples, as well as (ii) increases in the magnitudes of three-dimensional turbulence production and turbulence transport. The effects of these phenomena are especially apparent in local Nusselt number ratio distributions measured just inside of the dimples and just downstream of the downstream edges of the dimples. Data are also presented to illustrate the effects of Reynolds number and streamwise development for δD=0.1 dimples. Significant local Nusselt number ratio variations are observed at different streamwise locations, whereas variations with the Reynolds number are mostly apparent on flat surfaces just downstream of individual dimples.

1.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H.-K.
, and
Glezer
,
B.
, 2001, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
ASME J. Turbomach.
0889-504X,
123
(
1
), pp.
115
123
.
2.
Burgess
,
N. K.
,
Oliveira
,
M. M.
, and
Ligrani
,
P. M.
, 2003, “
Nusselt Number Behavior on Deep Dimpled Surfaces Within a Channel
,”
ASME J. Heat Transfer
0022-1481,
125
(
1
), pp.
11
18
.
3.
Mahmood
,
G. I.
, and
Ligrani
,
P. M.
, 2002, “
Heat Transfer in a Dimpled Channel: Combined Influences of Aspect Ratio, Temperature Ratio, Reynolds Number, and Flow Structure
,”
Int. J. Heat Mass Transfer
0017-9310,
45
(
10
), pp.
2011
2020
.
4.
Mahmood
,
G. I.
,
Sabbagh
,
M. Z.
, and
Ligrani
,
P. M.
, 2001, “
Heat Transfer in a Channel With Dimples and Protrusions on Opposite Walls
,”
J. Thermophys. Heat Transfer
0887-8722,
15
(
3
), pp.
275
283
.
5.
Ligrani
,
P. M.
,
Mahmood
,
G. I.
,
Harrison
,
J. L.
,
Clayton
,
C. M.
, and
Nelson
,
D. L.
, 2001, “
Flow Structure and Local Nusselt Number Variations in a Channel With Dimples and Protrusions on Opposite Walls
,”
Int. J. Heat Mass Transfer
0017-9310,
44
(
23
), pp.
4413
4425
.
6.
Afanasyev
,
V. N.
,
Chudnovsky
,
Y. P.
,
Leontiev
,
A. I.
, and
Roganov
,
P. S.
, 1993, “
Turbulent Flow Friction and Heat Transfer Characteristics for Spherical Cavities on a Flat Plate
,”
Exp. Therm. Fluid Sci.
0894-1777,
7
, pp.
1
8
.
7.
Belen’kiy
,
M. Y.
,
Gotovskiy
,
M. A.
,
Lekakh
,
B. M.
,
Fokin
,
B. S.
, and
Dolgushin
,
K. S.
, 1994, “
Heat Transfer Augmentation Using Surfaces Formed by a System of Spherical Cavities
,”
Heat Transfer Res.
,
25
(
2
), pp.
196
203
.
8.
Kesarev
,
V. S.
, and
Kozlov
,
A. P.
, 1994, “
Convective Heat Transfer in Turbulized Flow Past a Hemispherical Cavity
,”
Heat Transfer Res.
,
25
(
2
), pp.
156
160
.
9.
Terekhov
,
V. I.
,
Kalinina
,
S. V.
, and
Mshvidobadze
,
Y. M.
, 1995, “
Flow Structure and Heat Transfer on a Surface With a Unit Hole Depression
,”
Russ. J. Eng. Thermophys.
1051-8053,
5
, pp.
11
33
.
10.
Schukin
,
A. V.
,
Koslov
,
A. P.
, and
Agachev
,
R. S.
, 1995, “
Study and Application of Hemispherical Cavities For Surface Heat Transfer Augmentation
,”
ASME 40th Int. Gas Turbine and Aeroengine Congress and Exposition
, Houston,
ASME
, New York, ASME Paper No. 95-GT-59.
11.
Gortyshov
,
Y. F.
,
Popov
,
I. A.
,
Amirkhanov
,
R. D.
, and
Gulitsky
,
K. E.
, 1998, “
Studies of Hydrodynamics and Heat Exchange in Channels With Various Types of Intensifiers
,”
Proc. of 11th Int. Heat Transfer Congress
, Vol.
6
, pp.
83
88
.
12.
Chyu
,
M. K.
,
Yu
,
Y.
,
Ding
,
H.
,
Downs
,
J. P.
, and
Soechting
,
F. O.
, 1997, “
Concavity Enhanced Heat Transfer in an Internal Cooling Passage
,”
ASME 42nd International Gas Turbine and Aeroengine Congress and Exposition
, Orlando,
ASME
, New York, ASME Paper No. 97-GT-437.
13.
Lin
,
Y.-L.
,
Shih
,
T. I.-P.
, and
Chyu
,
M. K.
, 1999, “
Computations of Flow and Heat Transfer in a Channel With Rows of Hemispherical Cavities
,”
ASME 44th International Gas Turbine and Aeroengine Congress and Exposition
, Indianapolis,
ASME
, New York, ASME Paper No. 99-GT-263.
14.
Moon
,
H.-K.
,
O’Connell
,
T.
, and
Glezer
,
B.
, 1999, “
Channel Height Effect on Heat Transfer and Friction in a Dimpled Passage
,”
ASME 44th International Gas Turbine and Aeroengine Congress and Exposition
, Indianapolis,
ASME
, New York, ASME Paper No. 99-GT-163.
15.
Terekhov
,
V. I.
, and
Kalinina
,
S. V.
, 2002, “
Flow and Heat Transfer in a Single Spherical Cavity: State of the Problem and Unanswered Questions (Review)
,”
Thermophys. Aeromech.
,
9
(
4
), pp.
475
496
.
16.
Isaev
,
S. A.
,
Leontiev
,
A. I.
,
Kudryavtsev
,
N. A.
, and
Pushnyi
,
I. A.
, 2003, “
The Effect of Rearrangement of the Vortex Structure on Heat Transfer Under Conditions of Increasing Depth of a Spherical Dimple in the Wall of a Narrow Channel
,”
Teplofiz. Vys. Temp.
0040-3644,
41
(
2
), pp.
268
272
.
17.
Ligrani
,
P. M.
,
Harrison
,
J. L.
,
Mahmood
,
G. I.
, and
Hill
,
M. L.
, 2001, “
Flow Structure Due to Dimple Depressions on a Channel Surface
,”
Phys. Fluids
1070-6631,
13
(
11
), pp.
3442
3451
.
18.
Ligrani
,
P. M.
,
Singer
,
B. A.
, and
Baun
,
L. R.
, 1989, “
Miniature Five-Hole Pressure Probe for Measurement of Three Mean Velocity Components in Low Speed Flow
,”
J. Phys. E
0022-3735,
22
(
10
), pp.
868
876
.
19.
Ligrani
,
P. M.
,
Singer
,
B. A.
, and
Baun
,
L. R.
, 1989, “
Spatial Resolution and Downwash Velocity Corrections for Multiple-Hole Pressure Probes in Complex Flows
,”
Exp. Fluids
0723-4864,
7
(
6
), pp.
424
426
.
20.
Ligrani
,
P. M.
, 2000, “
Flow Visualization and Flow Tracking as Applied to Turbine Components in Gas Turbine Engines
,”
Meas. Sci. Technol.
0957-0233,
11
(
7
), pp.
992
1006
.
21.
Kline
,
S. J.
, and
McClintock
,
F. A.
, 1953, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
0025-6501,
75
, pp.
3
8
.
22.
Moffat
,
R. J.
, 1988, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
0894-1777,
1
(
1
), pp.
3
17
.
23.
Lienhard
,
J. H.
, 1987,
A Heat Transfer Textbook
, 2nd ed.,
Prentice-Hall
, Englewood Cliffs, NJ, pp.
338
343
.
24.
Ligrani
,
P. M.
,
Oliveira
,
M. M.
, and
Blaskovich
,
T.
, 2003, “
Comparison of Heat Transfer Augmentation Techniques
,”
AIAA J.
0001-1452,
41
(
3
), pp.
337
362
.
You do not currently have access to this content.