Low-dimensional nanostructured materials are promising candidates for high efficiency solid-state cooling devices based on the Peltier effect. Thermal transport in these low-dimensional materials is a key factor for device performance since the thermoelectric figure of merit is inversely proportional to thermal conductivity. Therefore, understanding thermal transport in nanostructured materials is crucial for engineering high performance devices. Thermal transport in semiconductors is dominated by lattice vibrations called phonons, and phonon transport is often markedly different in nanostructures than it is in bulk materials for a number of reasons. First, as the size of a structure decreases, its surface area to volume ratio increases, thereby increasing the importance of boundaries and interfaces. Additionally, at the nanoscale the characteristic length of the structure approaches the phonon wavelength, and other interesting phenomena such as dispersion relation modification and quantum confinement may arise and further alter the thermal transport. In this paper we discuss phonon transport in semiconductor superlattices and nanowires with regards to applications in solid-state cooling devices. Systematic studies on periodic multilayers called superlattices disclose the relative importance of acoustic impedance mismatch, alloy scattering, and crystalline imperfections at the interfaces. Thermal conductivity measurements of mono-crystalline silicon nanowires of different diameters reveal the strong effects of phonon-boundary scattering. Experimental results for Si/SiGe superlattice nanowires indicate that different phonon scattering mechanisms may disrupt phonon transport at different frequencies. These experimental studies provide insight regarding the dominant mechanisms for phonon transport in nanostructures. Finally, we also briefly discuss Peltier coolers made from nanostructured materials that have shown promising cooling performance.

1.
Mahan
,
G.
,
Sales
,
B.
, and
Sharp
,
J.
,
1997
, “
Thermoelectric Materials: New Approaches to an Old Problem
,”
Phys. Today
,
50
, pp.
42
47
.
2.
DiSalvo
,
F. J.
,
1999
, “
Thermoelectric Cooling and Power Generation
,”
Science
,
285
, pp.
703
706
.
3.
Hicks
,
L. D.
, and
Dresselhaus
,
M. S.
,
1993
, “
Effect of Quantum-Well Structures on the Thermoelectric Figure of Merit
,”
Phys. Rev. B
,
47
, pp.
12727
12731
.
4.
Hicks
,
L. D.
,
Harman
,
T. C.
, and
Dresselhaus
,
M. S.
,
1993
, “
Use of Quantum-Well Superlattices to Obtain a High Figure of Merit from Nonconventional Thermoelectric Materials
,”
Appl. Phys. Lett.
,
63
, pp.
3230
3232
.
5.
Hicks
,
L. D.
, and
Dresselhaus
,
M. S.
,
1993
, “
Thermoelectric Figure of Merit of a One-Dimensional Conductor
,”
Phys. Rev. B
,
47
, pp.
16631
16634
.
6.
Nolas, G. S., Sharp, J., and Goldsmith, H. J., 2001, Thermoelectric: Basic Principles and New Materials Developments, Springer, Heidelberg.
7.
Rowe, D. M., 1995, CRC Handbook of Thermoelectrics, CRC, Boca Raton, FL.
8.
Venkatasubramanian
,
R.
,
Siivola
,
E.
,
Colpitts
,
T.
, and
O’Quinn
,
B.
,
2001
, “
Thin-Film Thermoelectric Devices with High Room-Temperature Figures of Merit
,”
Nature (London)
,
413
, pp.
597
602
.
9.
Harman
,
T. C.
,
Taylor
,
P. J.
,
Walsh
,
M. P.
, and
LaForge
,
B. E.
,
2002
, “
Quantum Dot Superlattice Thermoelectric Materials and Devices
,”
Science
,
297
, pp.
2229
2232
.
10.
Majumdar
,
A.
,
2004
, “
Thermoelectricity in Semiconductor Nanostructures
,”
Science
,
303
, pp.
777
778
.
11.
Chen
,
G.
,
2000
, “
Phonon Heat Conduction in Nanostructures
,”
Int. J. Therm. Sci.
,
39
, pp.
471
480
.
12.
Cahill
,
D. G.
,
Goodson
,
K.
, and
Majumdar
,
A.
,
2002
, “
Thermometry and Thermal Transport in Micro/Nanoscale Solid-State Devices and Structures
,”
J. Heat Transfer
,
124
, pp.
223
241
.
13.
Cahill
,
D. G.
,
Ford
,
W. K.
,
Goodson
,
K. E.
,
Mahan
,
G. D.
,
Majumdar
,
A.
,
Maris
,
H. J.
,
Merlin
,
R.
, and
Phillpot
,
S. R.
,
2003
, “
Nanoscale Thermal Transport
,”
J. Appl. Phys.
,
93
, pp.
793
818
.
14.
Chen
,
G.
, and
Shakouri
,
A.
,
2002
, “
Heat Transfer in Nanostructures for Solid-State Energy Conversion
,”
J. Heat Transfer
,
124
, pp.
242
252
.
15.
Chen
,
G.
,
2001
, “
Phonon Transport in Low-Dimensional Structures
,”
Semicond. Semimetals
,
71
, pp.
203
258
.
16.
Faghri, M., and Sunde´n, B., 2004, Heat and Fluid Flow in Microscale and Nanoscale Structures, WIT, Boston, MA.
17.
Chen
,
G.
,
Zeng
,
T.
,
Borca-Tasciuc
,
T.
, and
Song
,
D.
,
2000
, “
Phonon Engineering in Nanostructures for Solid-State Energy Conversion
,”
Mater. Sci. Eng., A
,
292
, pp.
155
161
.
18.
Ju
,
Y. S.
, and
Goodson
,
K. E.
,
1999
, “
Phonon Scattering in Silicon Films with Thickness of Order 100 nm
,”
Appl. Phys. Lett.
,
74
, pp.
3005
3007
.
19.
Narayanamurti
,
V.
,
Sto¨rmer
,
H. L.
,
Chin
,
M. A.
,
Gossard
,
A. C.
, and
Wiegmann
,
W.
,
1979
, “
Selective Transmission of High-Frequency Phonons by a Superlattice: The “Dielectric” Phonon Filter
,”
Phys. Rev. Lett.
,
43, pp.
2012
2016
.
20.
Simkin
,
M. V.
, and
Mahan
,
G. D.
,
2000
, “
Minimum Thermal Conductivity of Superlattices
,”
Phys. Rev. Lett.
,
84
, pp.
927
930
.
21.
Ren
,
S. Y.
, and
Dow
,
J. D.
,
1982
, “
Thermal Conductivity of Superlattices
,”
Phys. Rev. B
,
25
, pp.
3750
3755
.
22.
Chen
,
G.
,
1999
, “
Phonon Wave Heat Conduction in Thin Films and Superlattices
,”
J. Heat Transfer
,
121
, pp.
945
953
.
23.
Yao
,
T.
,
1987
, “
Thermal-Properties of AlAs/GaAs Superlattices
,”
Appl. Phys. Lett.
,
51
, pp.
1798
1800
.
24.
Yu
,
X. Y.
,
Chen
,
G.
,
Verma
,
A.
, and
Smith
,
J. S.
,
1995
, “
Temperature Dependence of Thermophysical Properties of GaAs/AlAs Periodic Structure
,”
Appl. Phys. Lett.
,
67
, pp.
3554
3556
.
25.
Capinski
,
W. S.
, and
Maris
,
H. J.
,
1996
, “
Thermal Conductivity of GaAs/AlAs Superlattices
,”
Physica B
,
219 and 220
, pp.
699
701
.
26.
Capinski
,
W. S.
,
Maris
,
H. J.
,
Cardona
,
T. M.
,
Ploog
,
K.
, and
Katzer
,
D. S.
,
1999
, “
Thermal Conductivity Measurements of GaAs/AlAs Superlattices using a Picosecond Optical Pump-and-Probe Technique
,”
Phys. Rev. B
,
59
, pp.
8105
8113
.
27.
Lee
,
S.-M.
,
Cahill
,
D. G.
, and
Venkatasubramanian
,
R.
,
1997
, “
Thermal Conductivity of Si-Ge Superlattices
,”
Appl. Phys. Lett.
,
70
, pp.
2957
2959
.
28.
Chen
,
G.
, and
Neagu
,
M.
,
1997
, “
Thermal Conductivity and Heat Transfer in Superlattices
,”
Appl. Phys. Lett.
,
71
, pp.
2761
2763
.
29.
Borca-Tasciuc
,
T.
,
Liu
,
W.
,
Liu
,
J.
,
Zeng
,
T.
,
Song
,
D. W.
,
Moore
,
C. D.
,
Chen
,
G.
,
Wang
,
K. L.
,
Goorsky
,
M.
,
Redetic
,
T.
,
Gronsky
,
R.
,
Koga
,
T.
, and
Dresselhaus
,
M. S.
,
2000
, “
Thermal Conductivity of Symmetrically Strained Si/Ge Superlattices
,”
Superlattices Microstruct.
,
28
, pp.
199
206
.
30.
Huxtable
,
S.
,
Abramson
,
A.
,
Tien
,
C.-L.
,
Majumdar
,
A.
,
LaBounty
,
C.
,
Fan
,
X.
,
Zheng
,
G.
,
Bowers
,
J. E.
,
Shakouri
,
A.
, and
Croke
,
E. T.
,
2002
, “
Thermal Conductivity of Si/SiGe and SiGe/SiGe Superlattices
,”
Appl. Phys. Lett.
,
80
, pp.
1737
1739
.
31.
Huxtable, S. T., Abramson, A. R., Majumdar, A., Shakouri, A., Croke, E. T., and Ahn, C. C., 2002, “The Role of Defects and Acoustic Impedance Mismatch on Heat Conduction in SiGe Based Superlattices,” Proc. ASME IMECE, (MEMS Division), New Orleans, LA, pp. 19–23.
32.
Abramson
,
A. R.
,
Tien
,
C. L.
, and
Majumdar
,
A.
,
2002
, “
Interface and Strain Effects on the Thermal Conductivity of Heterostructures: A Molecular Dynamics Study
,”
J. Heat Transfer
,
124
, pp.
963
970
.
33.
Chen
,
Y. F.
,
Li
,
D.
,
Yang
,
J.
,
Wu
,
Y.
,
Lukes
,
J. R.
, and
Majumdar
,
A.
,
2004
, “
Molecular Dynamics Study of the Lattice Thermal Conductivity of Kr/Ar Superlattice Nanowires
,”
Physica B
,
349
, pp.
270
280
.
34.
Huxtable, S. T., Abramson, A. R., Majumdar, A., Shakouri, A., Croke, E. T., and Ahn, C. C., 2004 (unpublished).
35.
Touzelbaev
,
M. N.
,
Zhou
,
P.
,
Venkatasubramanian
,
R.
, and
Goodson
,
K. E.
,
2001
, “
Thermal Characterization of Bi2Te3/Sb2Te3 Superlattices
,”
J. Appl. Phys.
,
90
, pp.
763
767
.
36.
Auld, B. A., 1973, Acoustic Fields and Waves in Solids, Wiley, New York.
37.
Nishiguchi
,
N.
,
Ando
,
Y.
, and
Wybourne
,
M. N.
,
1997
, “
Acoustic Phonon Modes of Rectangular Quantum Wires
,”
J. Phys.: Condens. Matter
,
9
, pp.
5751
5764
.
38.
Yu
,
S. G.
,
Kim
,
K. W.
,
Stroscio
,
M. A.
, and
Iafrate
,
G. J.
,
1995
, “
Electron-Acoustic-Phonon Scattering Rates in Cylindrical Quantum Wires
,”
Phys. Rev. B
,
51
, pp.
4695
4698
.
39.
Seyler
,
J.
, and
Wybourne
,
M. N.
,
1992
, “
Acoustic Waveguide Modes Observed in Electrically Heated Metal Wires
,”
Phys. Rev. Lett.
,
69, pp.
1427
1430
.
40.
Papandrew
,
A. B.
,
Yue
,
A. F.
,
Fultz
,
B.
,
Halevy
,
I.
,
Sturhahn
,
W.
,
Toellner
,
T. S.
,
Alp
,
E. E.
, and
Mao
,
H.-K.
,
2004
, “
Vibrational Modes in Nanocrystalline Iron under High Pressure
,”
Phys. Rev. B
,
69
, p.
144301
144301
.
41.
Shi
,
L.
,
Li
,
D.
,
Yu
,
C.
,
Jang
,
W.
,
Yao
,
Z.
, and
Majumdar
,
A.
,
2003
, “
Measuring Thermal and Thermoelectric Properties of One-Dimensional Nanostructures Using a Microfabricated Device
,”
J. Heat Transfer
,
125
, pp.
881
888
.
42.
Li
,
D.
,
Wu
,
Y.
,
Kim
,
P.
,
Shi
,
L.
,
Yang
,
P.
, and
Majumdar
,
A.
,
2003
, “
Thermal Conductivity of Individual Silicon Nanowires
,”
Appl. Phys. Lett.
,
83
, pp.
2934
2936
.
43.
Mingo
,
N.
,
Yang
,
L.
,
Li
,
D.
, and
Majumdar
,
A.
,
2003
, “
Predicting the Thermal Conductivity of Si and Ge Nanowires
,”
Nano Lett.
,
3
, pp.
1713
1716
.
44.
Soyez
,
G.
,
Eastman
,
J. A.
,
Thompson
,
L. J.
,
Bai
,
G. R.
,
Baldo
,
P. M.
,
McCormick
,
A. W.
,
DiMelfi
,
R. J.
,
Elmustafa
,
A. A.
,
Tambwe
,
M. F.
, and
Stone
,
D. S.
,
2000
, “
Grain-Size-Dependent Thermal Conductivity of Nanocrystalline Yttria-Stabilized Zirconia Film Grown by Metal-Organic Chemical Vapor Deposition
,”
Appl. Phys. Lett.
,
77
, pp.
1155
1157
.
45.
Yang
,
H.-S.
,
Bai
,
G.-R.
,
Thompson
,
L. J.
, and
Eastman
,
J. A.
,
2002
, “
Interfacial Thermal Resistance in Nanocrystalline Yttria-Stabilized Zirconia
,”
Acta Mater.
,
50
, pp.
2309
2317
.
46.
Li
,
D.
,
Wu
,
Y.
,
Fan
,
R.
,
Yang
,
P.
, and
Majumdar
,
A.
,
2003
, “
Thermal Conductivity of Si/SiGe Superlattice Nanowires
,”
Appl. Phys. Lett.
,
83
, pp.
3186
3188
.
47.
Goldsmid
,
H. J.
, and
Penn
,
A. W.
,
1968
, “
Boundary Scattering of Phonons in Solid Solutions
,”
Phys. Lett.
,
27A
, pp.
523
524
.
48.
Tighe
,
T. S.
,
Worlock
,
J. M.
, and
Roukes
,
M. L.
,
1997
, “
Direct Thermal Conductance Measurements on Suspended Monocrystalline Nanostructures
,”
Appl. Phys. Lett.
,
70
, pp.
2687
2689
.
49.
Fon
,
W.
,
Schwab
,
K. C.
,
Worlock
,
J. M.
, and
Roukes
,
M. L.
,
2002
, “
Phonon Scattering Mechanisms in Suspended Nanostructures from 4 to 40 K
,”
Phys. Rev. B
,
66
, p.
045302
045302
.
50.
Schwab
,
K.
,
Fon
,
W.
,
Henriksen
,
E. A.
,
Worlock
,
J. M.
, and
Roukes
,
M. L.
,
2000
, “
Quantized Thermal Conductance: Measurements in Nanostructures
,”
Physica B
,
280
, pp.
458
459
.
51.
Schwab
,
K.
,
Henriksen
,
E. A.
,
Worlock
,
J. M.
, and
Roukes
,
M. L.
,
2000
, “
Measurement of the Quantum of Thermal Conductance
,”
Nature (London)
,
404
, pp.
974
977
.
52.
Rego
,
L. G. C.
, and
Kirczenow
,
G.
,
1998
, “
Quantized Thermal Conductance of Dielectric Quantum Wires
,”
Phys. Rev. Lett.
,
81
, pp.
232
235
.
53.
Ghoshal
,
U.
,
Ghoshal
,
S.
,
McDowell
,
C.
, and
Shi
,
L.
,
2002
, “
Enhanced Thermoelectric Cooling at Cold Junction Interfaces
,”
Appl. Phys. Lett.
,
80
, pp.
3006
3008
.
54.
Fan
,
X.
,
Zeng
,
G.
,
LaBounty
,
C.
,
Bowers
,
J. E.
,
Croke
,
E.
,
Ahn
,
C.
,
Huxtable
,
S.
,
Majumdar
,
A.
, and
Shakouri
,
A.
,
2001
, “
SiGeC/Si Superlattice Microcoolers
,”
Appl. Phys. Lett.
,
78
, pp.
1580
1582
.
55.
Abramson
,
A. R.
,
Huxtable
,
S. T.
,
Kim
,
W. C.
,
Yan
,
H.
,
Wu
,
Y.
,
Majumdar
,
A.
,
Tien
,
C. L.
, and
Yang
,
P.
,
2004
, “
Fabrication and Characterization of A Nanowire/Polymer-Based Nanocomposite for a Prototype Thermoelectric Device
,”
J. Microelectromech. Syst.
,
13
, pp.
505
513
.
56.
da Silva
,
L. W.
, and
Kaviany
,
M.
,
2004
, “
Micro-Thermoelectric Cooler: Interfacial Effects on Thermal and Electrical Transport
,”
Int. J. Heat Mass Transfer
,
47
, pp.
2417
2435
.
57.
Dresselhaus
,
M. S.
,
Lin
,
Y.-M.
,
Cronin
,
S. B.
,
Rabin
,
O.
,
Black
,
M. R.
,
Dresselhaus
,
G.
, and
Koga
,
T.
,
2001
, “
Quantum Wells and Quantum Wires for Potential Thermoelectric Applications
,”
Semicond. Semimetals
,
71
, pp.
1
121
.
You do not currently have access to this content.