Developing fluid flow and heat transfer with temperature dependent properties in microchannels with electrokinetic effects is investigated numerically. The electrokinetic effect on liquid flow in a parallel slit is modeled by the general Nernst-Planck equation describing anion and cation distributions, the Poisson equation determining the electrical potential profile, the continuity equation, and the modified Navier-Stokes equation governing the velocity field. A Finite-Volume Method is utilized to solve the proposed model.
1.
Hasegawa
, T.
, Suganuma
, M.
, and Watanabe
, H.
, 1997
, “Anomaly of Excess Pressure Drops of the Flow Through Very Small Orifices
,” Phys. Fluids
, 9
(1
), pp. 1
–3
.2.
Peng
, X. F.
, Peterson
, G. P.
, and Wang
, B. X.
, 1994
, “Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels
,” Exp. Heat Transfer
, 7
(4
), pp. 249
–264
.3.
Pfund
, D.
, Rector
, D.
, Shekarriz
, A.
, Popescu
, A.
, and Welty
, J.
, 2000
, “Pressure Drop Measurements in a Microchannel
,” AIChE J.
, 46
(8
), pp. 1496
–1507
.4.
Urbanek
, W.
, Zemel
, J. N.
, and Bau
, H. H.
, 1993
, “Investigation of the Temperature Dependence of Poiseuille Numbers in Microchannel Flow
,” J. Micromech. Microeng.
, 3
(4
), pp. 206
–208
.5.
Yang
, C.
, and Li
, D.
, 1998
, “Analysis of Electrokinetic Effects on the Liquid Flow in Rectangular Microchannels
,” Colloids Surf., A
, 143
(2–3
), pp. 339
–353
.6.
Yang
, C.
, and Li
, D.
, 1997
, “Electrokinetic Effects on Pressure-Driven Liquid Flows in Rectangular Microchannels
,” J. Colloid Interface Sci.
, 194
(1
), pp. 95
–107
.7.
Yang
, C.
, Li
, D.
, and Masliyah
, J. H.
, 1998
, “Modeling Forced Liquid Convection in Rectangular Microchannels With Electrokinetic Effects
,” Int. J. Heat Mass Transfer
, 41
(24
), pp. 4229
–4249
.8.
Mala
, G. M.
, Li
, D. Q.
, and Dale
, J. D.
, 1997
, “Heat Transfer and Fluid Flow in Microchannels
,” Int. J. Heat Mass Transfer
, 40
(13
), pp. 3079
–3088
.9.
Ng
, E. Y. K.
, and Poh
, S. T.
, 2000
, “Parametric Studies of Microchannel Conjugate Liquid Flows With Zeta Potential Effects
,” J. Electronics Manufacturing
,10
(4
), pp. 237
–252
.10.
Ren
, L.
, Qu
, W.
, and Li
, D.
, 2001
, “Interfacial Electrokinetic Effects on Liquid Flow in Microchannels
,” Int. J. Heat Mass Transfer
, 44
(16
), pp. 3125
–3134
.11.
Ren
, L.
, Li
, D.
, and Qu
, W.
, 2001
, “Electro-Viscous Effects on Liquid Flow in Microchannels
,” J. Colloid Interface Sci.
, 233
(1
), pp. 12
–22
.12.
Patankar, S. V., 1980, Numerical Heat Transfer and Fluid Flow, Hemisphere, Washington, DC.
13.
Hunter, R. J., 1981, Zeta Potential in Colloid Science: Principles and Applications, Academic Press, New York.
14.
Paluch
, M.
, 2000
, “Electrical Properties of Free Surface of Water and Aqueous Solutions
,” Adv. Colloid Interface Sci.
, 84
(1–3
), pp. 27
–45
.15.
Masliyah, J. H., 1994, Electrokinetic Transport Phenomena, AOSTRA Technical Publication Series No. 12., AOSTRA, Edmonton.
16.
Mala
, G. M.
, Li
, D.
, Werner
, G.
, Jacobasch
, H. J.
, and Ning
, Y. B.
, 1997
, “Flow Characteristics of Water Through a Microchannel Between Two Parallel Plates With Electrokinetic Effects
,” Int. J. Heat Fluid Flow
, 18
(5
), pp. 489
–496
.17.
Incorpera, F. P., 1999, Liquid Cooling of Electronic Devices by Single-Phase Convection, John Wiley & Sons, Inc., New York, pp. 262–263.
18.
CRC Press, 1986, CRC Handbook of Chemistry and Physics, Cleveland, OH, p. E-56.
19.
Toh
, K. C.
, Chen
, X. Y.
, and Chai
, J. C.
, 2002
, “Numerical Computation of Fluid Flow and Heat Transfer in Microchannels
,” Int. J. Heat Mass Transfer
, 45
(26
), pp. 5133
–5141
.Copyright © 2004
by ASME
You do not currently have access to this content.