An infinitesimal change in heat flux Q is shown, in terms of entropy flux Ψ=Q/T to have two parts, dQ=TdΨ+ΨdT, the first part being the thermal displacement and the second part being the thermal deformation. Only the second part dissipates into internal energy and generates entropy. This generation is shown to be dΠ=Ψ/TdT. Thermodynamic arguments are extended to transport phenomena. It is shown that a part of local rate of entropy generation is related to local rate of thermal deformation by s=ψi/TT/xi, where ψi=qi/T,qi being the rate of heat flux.

1.
Bird, R. B., Stewart, W. E., and Lightfoot, E. N., 1960, Transport Phenomena, Wiley, New York.
2.
Arpacı, V. S., 1966, Conduction Heat Transfer, Addison-Wesley, Massachusetts.
3.
Arpacı
,
V. S.
,
1986
, “
Radiative Entropy Production
,”
AIAA J.
,
24
, pp.
1859
1860
.
4.
Arpacı
,
V. S.
,
1987
, “
Radiative Entropy Production—Lost Heat into Entropy
,”
Int. J. Heat Mass Transf.
,
30
, pp.
2115
2123
.
5.
Arpacı, V. S., 1990, “Foundation of Entropy Production,” Advances in Thermodynamics, S. Sieniutycz and P. Salomon, eds., Taylor and Francis, New York.
6.
Arpacı, V. S., 1991, “Radiative Entropy Production—Heat Loss into Entropy,” Advances in Heat Transfer, 21, J. P. Hartnett and T. F. Irvine, eds., Academic Press, New York.
7.
Bejan, A., 1982, Entropy Generation through Heat and Fluid Flow, Wiley, New York.
8.
Bejan, A., 1982, “Second Law Analysis in Heat Transfer and Thermal Design,” Advances in Heat Transfer, 15, J. P. Hartnett and T. F. Irvine, eds., Academic Press, New York, pp. 1–58.
9.
Bejan, A., 1988, Advanced Engineering Thermodynamics, Wiley-Interscience, New York.
10.
Bejan
,
A.
,
1996
, “
Entropy Generation Minimization: The New Thermodynamics of Finite-size Devices and Finite-time Processes
,”
J. Appl. Phys.
,
79
, pp.
1191
1218
.
11.
Fermi, E., 1956, Thermodynamics, Dover Publications Inc., New York.
12.
Planck, M., 1945, Treatise on Thermodynamics, Dover Publications Inc., New York.
13.
Shercliff, J. A., 1965, A Textbook of Magnetohydrodynamics, Pergamon Press, Oxford.
14.
Mitchner, M., and Kruger, C. H., 1973, Partially Ionized Gases, John Wiley & Sons, New York.
15.
Unno
,
W.
, and
Spiegel
,
E. A.
,
1966
, “
The Eddington Approximation in the Radiative Heat Equation
,”
Publ. Astron. Soc. Jpn.
,
18
, pp.
85
95
.
16.
Milne, E. A., 1930, “Thermodynamics of Stars,” Handbuch der Astrophysik, Springer-Verlag, Berlin, 3, Chap. 2, pp. 65–255.
17.
Prandtl, L., and Tietjens, O. G., 1957, Fundamentals of Hydro and Aeromechanics, Dover Publications Inc., New York.
18.
Stratton, J. A., 1941, Electromagnetic Theory, McGraw-Hill, New York.
19.
Prager, W., 1961, Introduction to Mechanics of Continua, Ginn Press, Massachusetts, pp. 87–92.
20.
Arpacı
,
V. S.
, and
Esmaeeli
,
A.
,
2000
, “
Radiative Deformation
,”
J. Appl. Phys.
,
87
, pp.
3093
3100
.
You do not currently have access to this content.