Abstract

Ice ingestion can lead to a range of detrimental effects, from diminished engine performance to potentially catastrophic failure, especially for the first compressor stages. As the ice is traveling through the engine, whether due to direct hail particle ingestion or due to shedding of ice accretions, the impact with engine components that rotate at high speed can result in severe mechanical damage. The leading edge of the blades in the low-pressure compressor is particularly prone to local damage. Therefore, it is important to consider ice impact simulations as soon as possible in the design process. In this context, the authors propose in this work a multidisciplinary surrogate-based optimization strategy for a compressor rotor that includes ice impact simulations. For this purpose, a dedicated three-dimensional (3D) blade parametrization is first introduced. Then, based on this set of design parameters, the proposed optimization chain is presented, and each chain block is detailed. In particular, (1) aerodynamical simulations are considered at three different flight conditions, (2) maximum static stresses and frequency margins with respect to specific engine orders are evaluated, (3) the blade robustness to blade/casing contact events is assessed using the clearance consumption simplified criteria, and (4) ice impact simulations are carried out using transient response computations with an explicit time integration scheme and the ice fragment modeled with the smooth particle hydrodynamics (SPH) method. A dedicated lower-fidelity model has been developed for the specific purpose of optimization loops to maintain reasonable computations times. The proposed strategy is applied to design a rotor blade of a low-pressure compressor. The aim is to satisfy all mechanical constraints to ensure the blade robustness in operation, without deteriorating its aerodynamic performance. The optimization process is detailed in the paper, and an in-depth analysis of the optimization results is presented.

References

1.
Mason
,
J. G.
,
Strapp
,
J. W.
, and
Chow
,
P.
,
2006
, “
The Ice Particle Threat to Engines in Flight
,”
AIAA
Paper No. 2006-206.10.2514/6.2006-206
2.
List
,
R.
,
2014
, “
New Hailstone Physics. part i: Heat and Mass Transfer (Hmt) and Growth
,”
J. Atmos. Sci.
,
71
(
4
), pp.
1508
1520
.10.1175/JAS-D-12-0164.1
3.
List
,
R.
,
2014
, “
New Hailstone Physics. part ii: Interaction of the Variables
,”
J. Atmos. Sci.
,
71
(
6
), pp.
2114
2129
.10.1175/JAS-D-12-0165.1
4.
Anghileri
,
M.
,
Castelletti
,
L.
,
Invernizzi
,
F.
, and
Mascheroni
,
M.
,
2005
, “
A Survey of Numerical Models for Hail Impact Analysis Using Explicit Finite Element Codes
,”
Int. J. Impact Eng.
,
31
(
8
), pp.
929
944
.10.1016/j.ijimpeng.2004.06.009
5.
Carney
,
K. S.
,
Benson
,
D. J.
,
DuBois
,
P.
, and
Lee
,
R.
,
2006
, “
A Phenomenological High Strain Rate Model With Failure for Ice
,”
Int. J. Solids Struct.
,
43
(
25–26
), pp.
7820
7839
.10.1016/j.ijsolstr.2006.04.005
6.
Sherburn
,
J. A.
, and
Horstemeyer
,
M. F.
,
2010
, “
Hydrodynamic Modeling of Impact Craters in Ice
,”
Int. J. Impact Eng.
,
37
(
1
), pp.
27
36
.10.1016/j.ijimpeng.2009.07.001
7.
Pernas-Sánchez
,
J.
,
Pedroche
,
D. A.
,
Varas
,
D.
,
López-Puente
,
J.
, and
Zaera
,
R.
,
2012
, “
Numerical Modeling of Ice Behavior Under High Velocity Impacts
,”
Int. J. Solids Struct.
,
49
(
14
), pp.
1919
1927
.10.1016/j.ijsolstr.2012.03.038
8.
Schlaps
,
R. C.
,
Shahpar
,
S.
, and
Toropov
,
V.
,
2017
, “
Multi-Disciplinary Optimisation of a Compressor Rotor Subjected to Ice Impact
,” Proceedings of 12th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Stockholm, Sweden, Apr. 3–7, Paper No.
ETC2017-250
.https://www.euroturbo.eu/publications/proceedings-papers/etc2017-268/
9.
Böhm
,
H.
,
Hornig
,
A.
,
Gude
,
M.
,
Högner
,
L.
, and
Meyer
,
M.
,
2023
, “
A Methodology for a Coupled Structural - CFD Analysis of Compressor Rotor Blades Subjected to Ice Impact With Uncertain Impactor Parameters
,”
ASME J. Eng. Gas Turbines Power
, 145(3), p.
031001
.10.1115/1.4055687
10.
Siller
,
U.
,
Voß
,
C.
, and
Nicke
,
E.
,
2009
, “
Automated Multidisciplinary Optimization of a Transonic Axial Compressor
,”
AIAA
Paper No. 2009-863.10.2514/6.2009-863
11.
Verstraete
,
T.
,
Alsalihi
,
Z.
, and
Van den Braembussche
,
R.
,
2010
, “
Multidisciplinary Optimization of a Radial Compressor for Micro Gas Turbine Applications
,”
ASME J. Turbomach.
,
132
(
3
), p.
031004
.10.1115/1.3144162
12.
Zhang
,
L.
,
Mi
,
D.
,
Yan
,
C.
, and
Fangming
,
T.
,
2018
, “
Multidisciplinary Design Optimization for a Centrifugal Compressor Based on Proper Orthogonal Decomposition and an Adaptive Sampling Method
,”
Appl. Sci.
,
8
(
12
), p.
2608
.10.3390/app8122608
13.
Barsi
,
D.
,
Perrone
,
A.
,
Qu
,
Y.
,
Ratto
,
L.
,
Ricci
,
G.
,
Sergeev
,
V.
, and
Zunino
,
P.
,
2018
, “
Compressor and Turbine Multidisciplinary Design for Highly Efficient Micro-Gas Turbine
,”
J. Therm. Sci.
,
27
(
3
), pp.
259
269
.10.1007/s11630-018-1007-2
14.
Aissa
,
M.
, and
Verstraete
,
T.
,
2019
, “
Metamodel-Assisted Multidisciplinary Design Optimization of a Radial Compressor
,”
Int. J. Turbomach., Propul. Power
,
4
(
4
), p.
35
.10.3390/ijtpp4040035
15.
He
,
P.
,
Mader
,
C. A.
,
Martins
,
J. R. R. A.
, and
Maki
,
K. J.
,
2020
, “
Dafoam: An Open-Source Adjoint Framework for Multidisciplinary Design Optimization With Openfoam
,”
AIAA J.
,
58
(
3
), pp.
1304
1319
.10.2514/1.J058853
16.
Cuciumita
,
C.
,
John
,
A.
,
Qin
,
N.
, and
Shahpar
,
S.
,
2021
, “
Structurally Constrained Aerodynamic Adjoint Optimisation of Highly Loaded Compressor Blades
,”
ASME
Paper No. GT2021-59717.10.1115/GT2021-59717
17.
Cambier
,
L.
,
Gazaix
,
M.
,
Heib
,
S.
,
Plot
,
S.
,
Poinot
,
M.
,
Veuillot
,
J.
,
Boussuge
,
J.
, and
Montagnac
,
M.
,
2011
, “
An Overview of the Multi-Purpose elsA Flow Solver
,”
Aerosp. Lab
, (
2
), pp.
1
15
.https://hal.science/hal-01182452v1
18.
Launder
,
B.
, and
Sharma
,
B.
,
1974
, “
Application of Energy Dissipation Model of Turbulence to the Calculation of Flow Near Spinning Disc
,”
Lett. Heat Mass Transfer
,
1
(
2
), pp.
131
137
.10.1016/0094-4548(74)90150-7
19.
Hardy
,
R. L.
,
1971
, “
Multiquadratic Equations of Topography and Other Irregular Surfaces
,”
J. Geophys. Res.
,
76
(
8
), pp.
1905
1915
.10.1029/JB076i008p01905
20.
Biancolini
,
M. E.
,
2017
, “
Fast Radial Basis Functions for Engineering Applications
,” Springer, Cham.10.1007/978-3-319-75011-8
21.
Belyaev
,
A.
, and
Ohtake
,
Y.
,
2003
, “
A Comparison of Mesh Smoothing Methods
,”
Israel-Korea Bi-National Conference on Geometric Modeling and Computer Graphics
, Tel-Aviv, Israel, Feb. 12–14, pp.
83
87
.https://www.researchgate.net/publication/47861030_A_comparison_of_mesh_smoothing_methods
22.
Brewer
,
M. L.
,
Diachin
,
L. F.
,
Knupp
,
P. M.
,
Leurent
,
T.
, and
Melander
,
D. J.
,
2003
, “The Mesquite
Mesh Quality Improvement Toolkit
,”
Proceedings International Meshing Roundtable
, Santa Fe, NM, Sept. 14–17.https://trilinos.github.io/pdfs/Msq-Capabilities-TUG.pdf
23.
Batailly
,
A.
, and
Millecamps
,
A.
,
2016
, “
Minimising Clearance Consumption: A Key Factor for the Design of Blades Robust to Rotor/Stator Interactions?
,”
ASME
Paper No. GT2016-56721.10.1115/GT2016-56721
24.
Kojtych
,
S.
,
Nyssen
,
F.
,
Audet
,
C.
, and
Batailly
,
A.
,
2023
, “
Methodology for the Redesign of Compressor Blades Undergoing Nonlinear Structural Interactions: Application to Blade-Tip/Casing Contacts
,”
ASME J. Eng. Gas Turbines Power
,
145
(
5
), p.
051002
.10.1115/1.4055681
25.
Gingold
,
R. A.
, and
Monaghan
,
J. J.
,
1977
, “
Smoothed Particle Hydrodynamics: Theory and Application to Non-Spherical Stars
,”
Mon. Not. R. Astron. Soc.
,
181
(
3
), pp.
375
389
.10.1093/mnras/181.3.375
26.
Sainvitu
,
C.
,
Iliopoulou
,
V.
, and
Lepot
,
I.
,
2009
, “
Global Optimization With Expensive Functions - Sample Turbomachinery Design Application
,”
Recent Advances in Optimization and its Applications in Engineering: The 14th Belgian-French-German Conference on Optimization
, Leuven, Belgium, Sept. 14–18, pp.
499
509
.10.1007/978-3-642-12598-0_44
27.
Romero
,
V. J.
,
Burkardt
,
J. V.
,
Gunzburger
,
M. D.
, and
Peterson
,
J. S.
,
2006
, “
Comparison of Pure and” Latinized” Centroidal Voronoi Tessellation Against Various Other Statistical Sampling Methods
,”
The Fourth International Conference on Sensitivity Analysis of Model Output (SAMO 2004)
, Santa Fe, NM, Mar. 8–11, Vol.
91
, pp.
1266
1280
.10.1016/j.ress.2005.11.023
28.
Lachenbruch
,
P. A.
, and
Mickey
,
M. R.
,
1968
, “
Estimation of Error Rates in Discriminant Analysis
,”
Technometrics
,
10
(
1
), pp.
1
11
.10.1080/00401706.1968.10490530
29.
Geisser
,
S.
,
1975
, “
The Predictive Sample Reuse Method With Applications
,”
J. Am. Stat. Assoc.
,
70
(
350
), pp.
320
328
.10.1080/01621459.1975.10479865
30.
Stone
,
M.
,
1974
, “
Cross-Validatory Choice and Assessment of Statistical Predictions
,”
J. R. Stat. Soc., Ser. B
,
36
(
2
), pp.
111
133
.10.1111/j.2517-6161.1974.tb00994.x
31.
Kohonen
,
T.
,
1990
, “
The Self-Organizing Map
,”
Proc. IEEE
,
78
(
9
), pp.
1464
1480
.10.1109/5.58325
32.
Saltelli
,
A.
,
Ratto
,
M.
,
Andres
,
T.
,
Campolongo
,
F.
,
Cariboni
,
J.
,
Gatelli
,
D.
,
Saisana
,
M.
, and
Tarantola
,
S.
,
2008
,
Global Sensitivity Analysis. The Primer
, Wiley, Chichester, UK, Vol.
304
, p.
1
.
You do not currently have access to this content.