Graphical Abstract Figure

LabVIEW block diagram to construct the experiment planner tool.

Graphical Abstract Figure

LabVIEW block diagram to construct the experiment planner tool.

Close modal

Abstract

In the face of new engine research challenges, legacy hardware and once state-of-the-art assumptions may become less relevant, especially those made due to the computational limitations of the hardware at the time of initial development. Such legacy elements can potentially limit the effectiveness of accurately describing key parameters or metrics during experimentation or postprocessing. As the behavior of novel fuels is also not always fully understood, this highlights the need for tools to guide the experimental design to avoid unexpected and potentially dangerous outcomes. This paper details the conversion of an existing data acquisition system for a spark-ignited single-cylinder cooperative fuel research (CFR) engine to handle a variety of different emerging alternative fuels. Modifications to the in-house legacy LabVIEW program and data acquisition system are detailed, with emphasis on providing additional tools to aid in the experimentation expediency and safety. The existing CFR testing facility is converted from a single liquid or single gaseous fuel capable system to a multifuel compatible system, complete with on-the-fly calculations of mass, energy, and volume fractions of existing fuel blends, increased low-speed sampling rates, and a calculating tool to command fuel flow set-points for a given blend fraction, equivalence ratio and airflow set-point. Additional factors, such as sensor selection and communication, are discussed with an emphasis on reducing experimental uncertainty. Overall, this work provides insights into possible adjustments and considerations when upgrading existing experimental setups to accommodate emerging alternative fuel use.

References

1.
Kho
,
S.
,
Ki
,
J.
,
Park
,
M.
,
Kong
,
C.
, and
Lee
,
K.
,
2009
, “
Development of Condition Monitoring Test Cell Using Micro Gas Turbine Engine
,”
ASME
Paper No. GT2009-59931.10.1115/GT2009-59931
2.
Beneda
,
K.
,
Kavas
,
L.
, and
Varga
,
B.
,
2019
, “
Development of Data Acquisition System and Hardware Simulator for Turbojet Engine Test Bench Using Alternative Fuels
,” International Conference on Military Technologies (
ICMT
),
Brno, Czech Republic
, May 30–31, pp.
1
7
.10.1109/MILTECHS.2019.8870037
3.
Beneda
,
K.
,
Kavas
,
L.
, and
Varga
,
B.
,
2020
, “
Advanced Data Acquisition System for Alternative Fuels Micro Turbojet Engine Test Bench
,” New Trends in Aviation Development (
NTAD
),
Starý Smokovec, Slovakia
, Sept. 17–18, pp.
19
23
.10.1109/NTAD51447.2020.9379099
4.
Baltaci
,
K.
, and
Yildiz
,
F.
,
2009
, “
NI LabView Data Acquisition System Design Using Hydrogen Fuel Cell
,”
International Conference on Application of Information and Communication Technologies
,
Baku, Azerbaijan
, Oct. 14–16, pp.
1
6
.10.1109/ICAICT.2009.5372578
5.
Dongfeng
,
W.
, and
Yingbao
,
L.
,
2017
, “
Boiler Combustion Condition Monitoring and Optimization System Based on Lab-VIEW
,” 13th IEEE International Conference on Electronic Measurement & Instruments (
ICEMI
),
Yangzhou, China
, Oct. 20–22, pp.
217
223
.10.1109/ICEMI.2017.8265770
6.
Feng
,
H.
,
Liu
,
F.
, and
Xu
,
Y.
,
2011
, “
Functional Testing System Based on LabVIEW for Gas-Fueled Automobile Engine ECU
,”
3rd International Conference on Advanced Computer Control
,
Harbin
, Jan. 18–20, pp.
357
361
.10.1109/ICACC.2011.6016431
7.
Winward
,
E.
,
Deng
,
J.
, and
Stobart
,
R. K.
,
2010
, “
Innovations In Experimental Techniques For The Development of Fuel Path Control In Diesel Engines
,”
SAE Int. J. Fuels Lubr.
,
3
(
1
), pp.
594
613
.10.4271/2010-01-1132
8.
Ausserer
,
J. K.
,
Litke
,
P. J.
,
Groenewegen
,
J.-R.
,
Rowton
,
A.
,
Polanka
,
M.
, and
Grinstead
,
K.
,
2013
, “
Development of Test Bench and Characterization of Performance in Small Internal Combustion Engines
,”
SAE
Paper No. 2013-32-9036.10.4271/2013-32-9036
9.
Wiegand
,
A.
,
Miers
,
S.
,
Blough
,
J.
,
Kowalski
,
D.
, and
Biske
,
A.
,
2012
, “
Development of a Micro-Engine Testing System
,”
SAE
Paper No. 2012-32-0105.10.4271/2012-32-0105
10.
Koç
,
T.
,
Karayel
,
D.
,
Boru
,
B.
,
Ayhan
,
V.
,
Cesur
,
Ï.
, and
Parlak
,
A.
,
2014
, “
Design and Implementation of the Control System of an Internal Combustion Engine Test Unit
,”
Adv. Mech. Eng.
,
6
, p.
914876
.10.1155/2014/914876
11.
Pérez
,
A.
,
Montero
,
G.
,
Ramos Irigoyen
,
R.
,
Garcia
,
C.
,
Coronado
,
M.
, and
Rodriguez
,
J.
,
2019
, “
Development and Implementation of Virtual Instrumentation Based on LabView Applied to Compression Ignition Engines Operated With Diesel-Biodiesel Blends
,”
MethodsX
,
6
, pp.
2782
2792
.10.1016/j.mex.2019.09.024
12.
Langness
,
C.
,
Mangus
,
M.
, and
Depcik
,
C.
,
2014
, “
Construction, Instrumentation, and Implementation of a Low Cost, Single-Cylinder Compression Ignition Engine Test Cell
,”
SAE
Paper No. 2014-01-0817.10.4271/2014-01-0817
13.
Strollo
,
J.
,
Peluso
,
S.
, and
O'Connor
,
J.
,
2021
, “
Effect of Hydrogen on Steady-State and Transient Combustion Instability Characteristics
,”
ASME J. Eng. Gas Turbines Power
,
143
(
7
), p.
071023
.10.1115/1.4049481
14.
Stępień
,
Z.
,
2021
, “
A Comprehensive Overview of Hydrogen- Fueled Internal Combustion Engines: Achievements and Future Challenges
,”
Energies
,
14
(
20
), p.
6504
.10.3390/en14206504
15.
Onorati
,
A.
,
Payri
,
R.
,
Vaglieco
,
B. M.
,
Agarwal
,
A. K.
,
Bae
,
C.
,
Bruneaux
,
G.
,
Canakci
,
M.
, et al.,
2022
, “
The Role of Hydrogen for Future Internal Combustion Engines
,”
Int. J. Engine Res.
,
23
(
4
), pp.
529
540
.10.1177/14680874221081947
16.
Gao
,
J.
,
Wang
,
X.
,
Song
,
P.
,
Tian
,
G.
, and
Ma
,
C.
,
2022
, “
Review of the Backfire Occurrences and Control Strategies for Port Hydrogen Injection Internal Combustion Engines
,”
Fuel
,
307
, p.
121553
.10.1016/j.fuel.2021.121553
17.
Ran
,
Z.
,
Hariharan
,
D.
,
Lawler
,
B.
, and
Mamalis
,
S.
,
2019
, “
Experimental Study of Lean Spark Ignition Combustion Using Gasoline, Ethanol, Natural Gas, and Syngas
,”
Fuel
,
235
, pp.
530
537
.10.1016/j.fuel.2018.08.054
18.
Ran
,
Z.
,
Assanis
,
D.
,
Hariharan
,
D.
, and
Mamalis
,
S.
,
2020
, “
Experimental Study of Spark-Ignition Combustion Using the Anode Off-Gas From a Solid Oxide Fuel Cell
,”
SAE
Paper No. 2020-01-0351.10.4271/2020-01-0351
19.
Ran
,
Z.
,
Longtin
,
J.
, and
Assanis
,
D.
,
2022
, “
Investigating Anode Off-Gas Under Spark-Ignition Combustion for SOFC-ICE Hybrid Systems
,”
Int. J. Engine Res.
,
23
(
5
), pp.
830
845
.10.1177/14680874211016987
20.
Loprete
,
J.
,
Ristow Hadlich
,
R.
,
Sirna
,
A.
,
Shaalan
,
A.
, and
Assanis
,
D.
, “
Combustion Performance and Emissions Characterization of Methane-Hydrogen Blends (Up to 50% by Vol.) in a Spark-Ignited CFR Engine
,”
ASME
Paper No. ICEF2023-110538.10.1115/ICEF2023-110538
21.
Ran
,
Z.
,
Ristow Hadlich
,
R.
,
Yang
,
R.
,
Dayton
,
D. C.
,
Mante
,
O. D.
, and
Assanis
,
D.
,
2022
, “
Experimental Investigation of Naphthenic Biofuel Surrogate Combustion in a Compression Ignition Engine
,”
Fuel
,
312
, p.
122868
.10.1016/j.fuel.2021.122868
22.
Ristow Hadlich
,
R.
,
Ran
,
Z.
,
Yang
,
R.
,
Assanis
,
D.
,
Mante
,
O.
, and
Dayton
,
D.
,
2022
, “
Experimental Investigation and Comparison of a Decalin/Butylcyclohexane Based Naphthenic Bioblendstock Surrogate Fuel in a Compression Ignition Engine
,”
SAE Int. J. Adv. Curr. Pract. Mob.
,
4
(
5
), pp.
1771
1781
.10.4271/2022-01-0513
23.
Ristow Hadlich
,
R.
,
Ran
,
Z.
,
Yang
,
R.
,
Mante
,
O.
,
Dayton
,
D.
, and
Assanis
,
D.
,
2024
, “
Experimental Investigation of a Butyl Cyclohexane/Propylcyclohexane Based Naphthenic Bio-Blendstock Surrogate Fuel for Use in a Compression Ignition Engine
,”
ASME
Paper No. ICEF2023-110527.10.1115/ICEF2023-110527
24.
Ristow Hadlich
,
R.
,
Loprete
,
J.
, and
Assanis
,
D.
,
2024
, “
A Deep Learning Approach to Predict in-Cylinder Pressure of a Compression Ignition Engine
,”
ASME J. Eng. Gas Turbines Power
,
146
(
9
), pp.
1
12
.10.1115/1.4064480
25.
Sirna
,
A.
,
Hassan
,
A.
,
Ristow Hadlich
,
R.
,
Loprete
,
J.
,
Trelles
,
J. P.
,
Van Dam
,
N.
,
Mack
,
J. H.
, and
Assanis
,
D.
,
2023
, “
Understanding Diesel-Pilot Assisted Methane Combustion in a Compression Ignition Engine
,”
ASME
Paper No. ICEF2023-109875.10.1115/ICEF2023-109875
26.
Rodríguez-Quiñonez
,
J. C.
, and
Real-Moreno
,
O.
,
2022
,
Graphical Programming Using LabVIEW: Fundamentals and Advanced Techniques
,
The Institution of Engineering and Technology
, London, UK.
27.
Student
,
1908
, “
The Probable Error of a Mean
,”
Biometrika
,
6
(
1
), pp.
1
25
.10.2307/2331554
28.
Shannon
,
C.
,
1949
, “
Communication in the Presence of Noise
,”
Proc. IRE
,
37
(
1
), pp.
10
21
.10.1109/JRPROC.1949.232969
29.
Kaul
,
B. C.
,
Lawler
,
B. J.
,
Finney
,
C. E.
,
Edwards
,
M. L.
, and
Wagner
,
R. M.
, “
Effects of Data Quality Reduction on Feed Back Metrics for Advanced Combustion Control
,”
SAE
Paper No. 2014-01-2707.10.4271/2014-01-2707
30.
Maurya
,
R. K.
,
2019
,
Reciprocating Engine Combustion Diagnostics
,
Springer International Publishing
,
Cham
.
31.
ALICAT
,
2024
, “
Serial Communications Primer
,” Alicat Scientific, Tucson, AZ, accessed Jan. 2, 2024, https://documents.alicat.com/Alicat-Serial-Primer.pdf
32.
Heywood
,
J. B.
,
2018
,
Internal Combustion Engine Fundamentals
, 2nd ed.,
McGraw-Hill Education
,
New York
.
You do not currently have access to this content.