Abstract

Supercritical carbon dioxide (sCO2) cycles are gaining attention for their efficiency and low carbon footprint in power plants. This study focuses on optimizing the performance of a 5 MW simple recuperated sCO2 Brayton loop during inventory control, a recommended strategy for maximum part-load efficiencies. Variable speed operation of turbomachines is explored to enhance part-load efficiency across the operating range, contrasting with the baseline case of constant turbine and compressor speeds. The analysis, which is based on an analytical formulation and validated component models, reveals that part-load efficiency can be improved by variable speed operation of the turbomachines. Additionally, decoupled shaft systems are found to outperform coupled or single shaft systems. Further, part-load efficiency deterioration in case of constant speeds has been discussed in detail. A unique feature of this study is the modeling methodology; model for the compressor is derived by modifying an ideal gas compressor model to account for the behavior of a real gas compressor. Component matching is performed systematically to accurately estimate sCO2 cycle conditions. The results predicted by the model provide valuable insights on design of control strategy including inventory management for better response and improved efficiency while operating under part-load conditions.

References

1.
Hoque
,
S. J.
, and
Kumar
,
P.
,
2021
, “
Analysis of a Dual Recuperated Dual Expansion Supercritical CO2 Cycle for Waste Heat Recovery Applications
,”
Trans. Indian Natl. Acad. Eng.
,
6
(
2
), pp.
439
459
.10.1007/s41403-021-00211-4
2.
Seshadri
,
L.
, and
Kumar
,
P.
,
2024
, “
Sliding Pressure Inventory Control of a Supercritical CO2 Cycle for Concentrated Solar Power—Analysis and Implications
,”
ASME J. Sol. Energy Eng.
,
146
(
1
), p.
011009
.10.1115/1.4063183
3.
Oh
,
B. S.
,
Jeong
,
Y.
,
Cho
,
S. K.
, and
Lee
,
J. I.
,
2021
, “
Controllability of S-CO2 Power System Coupled Small Modular Reactor With Improved Compressor Design
,”
Appl. Therm. Eng.
,
192
, p.
116957
.10.1016/j.applthermaleng.2021.116957
4.
Gonzalez-Salazar
,
M. A.
,
Kirsten
,
T.
, and
Prchlik
,
L.
,
2018
, “
Review of the Operational Flexibility and Emissions of Gas-and Coal-Fired Power Plants in a Future With Growing Renewables
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
1497
1513
.10.1016/j.rser.2017.05.278
5.
Salzmann
,
F.
,
1947
, “
Regulation Theory for Thermal Power Plants Employing a Closed Gas Cycle
,”
ASME J. Fluids Eng.
,
69
(
4
), pp.
329
335
.10.1115/1.4017384
6.
Covert
,
R. E.
,
Krase
,
J. M.
, and
Morse
,
D. C.
,
1974
, “
Effect of Various Control Modes on the Steady-State Full and Part Load Performance of a Direct-Cycle Nuclear Gas Turbine Power Plant
,”
ASME
Paper No. 74-WA/GT-7.10.1115/74-WA/GT-7
7.
Carstens
,
N.
,
2007
, “
Control Strategies for Supercritical Carbon Dioxide Power Conversion Systems
,”
Ph.D. dissertation
,
Massachusetts Institute of Technology
, Cambridge, MA.https://dspace.mit.edu/handle/1721.1/41295
8.
Oh
,
B. S.
, and
Lee
,
J. I.
,
2019
, “
Study of Autonomous Control System for S-CO2 Power Cycle
,”
3rd European Supercritical CO2 Conference
, Paris, France, Sept. 19–20, pp.
345
352
.10.17185/duepublico/48913
9.
Du
,
Y.
,
Yang
,
C.
,
Yu
,
Z.
,
Bao
,
W.
,
Hu
,
C.
, and
He
,
X.
,
2022
, “
Integrated Design and Off-Design Hybrid Control Strategy of Supercritical CO2 Recompression Cycle for Nuclear Power
,”
Appl. Therm. Eng.
,
217
, p.
119194
.10.1016/j.applthermaleng.2022.119194
10.
Yang
,
J.
,
Yang
,
Z.
, and
Duan
,
Y.
,
2020
, “
Part-Load Performance Analysis and Comparison of Supercritical CO2 Brayton Cycles
,”
Energy Convers. Manage.
,
214
, p.
112832
.10.1016/j.enconman.2020.112832
11.
Wright
,
S. A.
,
Davidson
,
C. S.
, and
Husa
,
C.
,
2018
, “
Off-Design Performance Modeling Results for a Supercritical CO2 Waste Heat Recovery Power System
,”
Proceedings of the 6th International Supercritical CO2 Power Cycles Symposium
,
Pittsburgh, PA
, Mar. 27–29, pp.
1
10
.https://sco2symposium.com/papers2018/modeling-control/055_Paper.pdf
12.
Roberts
,
R.
,
Brouwer
,
J.
,
Jabbari
,
F.
,
Junker
,
T.
, and
Ghezel-Ayagh
,
H.
,
2006
, “
Control Design of an Atmospheric Solid Oxide Fuel Cell/Gas Turbine Hybrid System: Variable Versus Fixed Speed Gas Turbine Operation
,”
J. Power Sources
,
161
(
1
), pp.
484
491
.10.1016/j.jpowsour.2006.03.059
13.
Traverso
,
A.
,
Magistri
,
L.
, and
Massardo
,
A. F.
,
2010
, “
Turbomachinery for the Air Management and Energy Recovery in Fuel Cell Gas Turbine Hybrid Systems
,”
Energy
,
35
(
2
), pp.
764
777
.10.1016/j.energy.2009.09.027
14.
Li
,
D.
,
Dougal
,
R. A.
,
Thirunavukarasu
,
E.
, and
Ouroua
,
A.
,
2013
, “
Variable Speed Operation of Turbogenerators to Improve Part-Load Efficiency
,” 2013 IEEE Electric Ship Technologies Symposium (
ESTS
),
Arlington, VA
, Apr. 22–24, pp.
353
359
.10.1109/ESTS.2013.6523760
15.
Mura
,
F.
,
de Doncker
,
R. W.
,
Persigehl
,
B.
,
Jeschke
,
P.
, and
Hameyer
,
K.
,
2011
, “
Analysis of a Gearless Medium-Voltage Variable Speed Gas Turbine System
,”
VGB Powertech
,
91
(
4
), pp.
39
43
.https://publications.rwth-aachen.de/record/185651
16.
Zhang
,
N.
, and
Cai
,
R.
,
2002
, “
Analytical Solutions and Typical Characteristics of Part-Load Performances of Single Shaft Gas Turbine and Its Cogeneration
,”
Energy Convers. Manage.
,
43
(
9–12
), pp.
1323
1337
.10.1016/S0196-8904(02)00018-3
17.
Alfani
,
D.
,
Binotti
,
M.
,
Macchi
,
E.
,
Silva
,
P.
, and
Astolfi
,
M.
,
2021
, “
sCO2 Power Plants for Waste Heat Recovery: Design Optimization and Part-Load Operation Strategies
,”
Appl. Therm. Eng.
,
195
, p.
117013
.10.1016/j.applthermaleng.2021.117013
18.
Vigdal
,
L. A. B.
, and
Bakken
,
L. E.
,
2017
, “
The Use of Variable Inlet Guide Vane or Speed Control to Maintain Constant Compressor Pressure Ratio in Wet Gas Flow and Their Effect on Diffuser Stability
,”
ASME
Paper No. GT2017-64785.10.1115/GT2017-64785
19.
Dostal
,
V.
,
Driscoll
,
M. J.
, and
Hejzlar
,
P.
,
2004
, “
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,”
Ph.D. thesis
, Department of Nuclear Engineering,
Massachusetts Institute of Technology,
Cambridge, MA.https://dspace.mit.edu/handle/1721.1/17746
20.
Li
,
H.
,
Fan
,
G.
,
Cao
,
L.
,
Yang
,
Y.
,
Yan
,
X.
,
Dai
,
Y.
,
Zhang
,
G.
, and
Wang
,
J.
,
2020
, “
A Comprehensive Investigation on the Design and Off-Design Performance of Supercritical Carbon Dioxide Power System Based on the Small-Scale Lead-Cooled Fast Reactor
,”
J. Clean. Prod.
,
256
, p.
120720
.10.1016/j.jclepro.2020.120720
21.
Monjurul Ehsan
,
M.
,
Guan
,
Z.
,
Klimenko
,
A. Y.
, and
Wang
,
X.
,
2018
, “
Design and Comparison of Direct and Indirect Cooling System for 25 MW Solar Power Plant Operated With Supercritical CO2 Cycle
,”
Energy Convers. Manage.
,
168
, pp.
611
628
.10.1016/j.enconman.2018.04.072
22.
Sathish
,
S.
, and
Kumar
,
P.
,
2021
, “
Equation of State Based Analytical Formulation for Optimization of sCO2 Brayton Cycle
,”
J. Supercrit. Fluids
,
177
, p.
105351
.10.1016/j.supflu.2021.105351
23.
Span
,
R.
, and
Wagner
,
W.
,
1996
, “
A New Equation of State for Carbon Dioxide Covering the Fluid Region From the Triple-Point Temperature to 1100 K at Pressures Up to 800 MPa
,”
J. Phys. Chem. Ref. Data
,
25
(
6
), pp.
1509
1596
.10.1063/1.555991
24.
Aungier
,
R. H.
,
1995
, “
Centrifugal Compressor Stage Preliminary Aerodynamic Design and Component Sizing
,”
ASME
Paper No. 95-GT-078.10.1115/95-GT-078
25.
Seshadri
,
L.
,
Kumar
,
P.
,
Nassar
,
A.
, and
Giri
,
G.
,
2022
, “
Analysis of Turbomachinery Losses in sCO2Brayton Power Blocks
,”
ASME J. Energy Resour. Technol., Trans. ASME
,
144
(
11
), p.
112101
.10.1115/1.4054133
26.
Saeed
,
M.
,
Ali Awais
,
A.
, and
Berrouk
,
A. S.
,
2021
, “
CFD Aided Design and Analysis of a Precooler With Zigzag Channels for Supercritical CO2 Power Cycle
,”
Energy Convers. Manage.
,
236
, p.
114029
.10.1016/j.enconman.2021.114029
27.
Dyreby
,
J. J.
,
Klein
,
S. A.
,
Nellis
,
G. F.
, and
Reindl
,
D. T.
,
2011
, “
Modeling Off-Design Operation of a Supercritical Carbon Dioxide Brayton Cycle
,”
Supercritical CO2 Power Cycle Symposium
, Boulder, CO, May 24–25, pp.
24
25
.https://www.scribd.com/document/216833649/modeling-off-design-operation-of-a-supercritical-carbon-dioxide-brayton-cycle-pdf
28.
Patnode
,
A. M.
,
2006
, “
Simulation and Performance Evaluation of Parabolic Trough Solar Power Plants
,”
Master’s thesis
, University of Wisconsin, Madison, WI.https://minds.wisconsin.edu/handle/1793/7590
29.
Petukhov
,
B. S.
,
1970
, “
Heat Transfer and Friction in Turbulent Pipe Flow With Variable Physical Properties
,”
Advances in Heat Transfer
,
Elsevier
, Amsterdam, The Netherlands, pp.
503
564
.
30.
Gnielinski
,
V.
,
1976
, “
New Equations for Heat and Mass Transfer in Turbulent Pipe and Channel Flow
,”
Int. Chem. Eng.
,
16
(
2
), pp.
359
367
.https://ui.adsabs.harvard.edu/abs/1975STIA...7522028G/abstract
31.
Bell
,
I. H.
,
Wronski
,
J.
,
Quoilin
,
S.
, and
Lemort
,
V.
,
2014
, “
Pure and Pseudo-Pure Fluid Thermophysical Property Evaluation and the Open-Source Thermophysical Property Library CoolProp
,”
Ind. Eng. Chem. Res.
,
53
(
6
), pp.
2498
2508
.10.1021/ie4033999
32.
Saeed
,
M.
,
Berrouk
,
A. S.
,
Salman Siddiqui
,
M.
, and
Ali Awais
,
A.
,
2020
, “
Effect of Printed Circuit Heat Exchanger's Different Designs on the Performance of Supercritical Carbon Dioxide Brayton Cycle
,”
Appl. Therm. Eng.
,
179
, p.
115758
.10.1016/j.applthermaleng.2020.115758
33.
Sienicki
,
J. J.
,
Moisseytsev
,
A.
,
Fuller
,
R. L.
,
Wright
,
S. A.
, and
Pickard
,
P. S.
,
2011
, “
Scale Dependencies of Supercritical Carbon Dioxide Brayton Cycle Technologies and the Optimal Size for a Next-Step Supercritical CO2 Cycle Demonstration
,” The 3rd International Symposium on Supercritical CO2 Power Cycles, Boulder, CO, May 24–25.
34.
Casey
,
M.
, and
Robinson
,
C.
,
2013
, “
A Method to Estimate the Performance Map of a Centrifugal Compressor Stage
,”
ASME J. Turbomach.
,
135
(
2
), p.
021034
.10.1115/1.4006590
35.
Oh
,
B. S.
,
Lee
,
J. I.
,
Kim
,
S. G.
,
Cho
,
K.
, and
Yu
,
H.
,
2016
, “
Transient Analyses of S-CO2 Cooled KAIST Micro Modular Reactor With GAMMA+ Code
,”
The 5th International Symposium - Supercritical CO2 Power Cycles
, San Antonio, TX, Mar. 28–31.https://sco2symposium.com/papers2016/SystemModeling/032paper.pdf
36.
Jiang
,
Y.
,
Liese
,
E.
,
Zitney
,
S. E.
, and
Bhattacharyya
,
D.
,
2018
, “
Design and Dynamic Modeling of Printed Circuit Heat Exchangers for Supercritical Carbon Dioxide Brayton Power Cycles
,”
Appl. Energy
,
231
, pp.
1019
1032
.10.1016/j.apenergy.2018.09.193
37.
American Petroleum Institute
,
1991
, “
Recommended Practice for Design and Installation of Offshore Production Platform Piping Systems
,” American Petroleum Institute, Washington, DC.https://standards.globalspec.com/std/13473926/api-rp-14e
38.
Saravanamuttoo
,
H. I. H.
,
Rogers
,
G. F. C.
, and
Cohen
,
H.
,
2001
,
Gas Turbine Theory
,
Pearson Education
, London, UK.
39.
Alfani
,
D.
,
Astolfi
,
M.
,
Binotti
,
M.
,
Silva
,
P.
, and
Persico
,
G.
,
2023
, “
Part Load Analysis of a Constant Inventory Supercritical CO2 Power Plant for Waste Heat Recovery in Cement Industry
,”
5th European sCO2 Conference for Energy Systems
, Prague, Czech Republic, Mar. 14–16, pp.
179
185
.10.17185/duepublico/77288
You do not currently have access to this content.