Abstract

This article investigates the emergence of isolated branches of solutions for blade-tip/casing structural contact configurations by means of a numerical procedure relying on Melnikov's energy principle. This study is carried out on the open fan blade model NASA rotor 67 in order to promote the reproducibility of the results. The blade is subjected to an harmonic forcing so as to initiate rubbing interactions. Contact is modeled in the frequency domain by the dynamic Lagrangian frequency-time harmonic balance method (DLFT-HBM) that accounts for vibro-impact as well as dry friction. This paper employs an isola detection procedure that was shown to give accurate results on such highly nonlinear applications. Several types of harmonic forcing are applied to the blade in order to observe subharmonic (i.e., with a fundamental frequency expressed as a fraction of the excitation frequency) isolated solutions. The existence of these solutions is shown to be related to nonlinear normal modes that feature lower periodicities than the excitation. The periodicity of the solutions is assumed to be linked to the periodicity of the nonlinear normal modes from which these solutions emerge. In some configurations, it is shown that nonlinear periodic solutions exist in the form of isolated branches while the main predicted response remains within the linear domain. This behavior is particularly detrimental since numerical strategies tackling nonlinear problems are usually not put to use when the response of the system is expected to be linear. The existence of such solutions is cross-checked by means of reference time integration simulations. Finally, an excitation of random shape is applied to show that this complex phenomenon persists for nonsimplified excitation shapes.

References

1.
Millecamps
,
A.
,
Brunel
,
J.-F.
,
Dufrénoy
,
P.
,
Garcin
,
F.
, and
Nucci
,
M.
,
2009
, “
Influence of Thermal Effects During Blade-Casing Contact Experiments
,”
ASME
Paper No. DETC2009-86842.10.1115/DETC2009-86842
2.
Millecamps
,
A.
,
Batailly
,
A.
,
Legrand
,
M.
, and
Garcin
,
F.
,
2015
, “
Snecma's Viewpoint on the Numerical and Experimental Simulation of Blade-Tip/Casing Unilateral Contacts
,”
ASME
Paper No. GT2015-42682.10.1115/GT2015-42682
3.
Carpenter
,
N. J.
,
Taylor
,
R. L.
, and
Katona
,
M. G.
,
1991
, “
Lagrange Constraints for Transient Finite Element Surface Contact
,”
Int. J. Numer. Methods Eng.
,
32
(
1
), pp.
103
128
.10.1002/nme.1620320107
4.
Legrand
,
M.
, and
Pierre
,
C.
,
2009
, “
Numerical Investigation of Abradable Coating Wear Through Plastic Constitutive Law: Application to Aircraft Engines
,”
ASME
Paper No. IDETC-CIE10.1115/IDETC-CIE 2009.
5.
Williams
,
R. J.
,
2011
, “
Simulation of Blade Casing Interaction Phenomena in Gas Turbines Resulting From Heavy Tip Rubs Using an Implicit Time Marching Method
,”
ASME
Paper No. GT2011-45495.10.1115/GT2011-45495
6.
Sinha
,
S. K.
,
2013
, “
Rotordynamic Analysis of Asymmetric Turbofan Rotor Due to Fan Blade-Loss Event With Contact-Impact Rub Loads
,”
J. Sound Vib.
,
332
(
9
), pp.
2253
2283
.10.1016/j.jsv.2012.11.033
7.
Colaïtis
,
Y.
, and
Batailly
,
A.
,
2022
, “
Stability Analysis of Periodic Solutions Computed for Blade-Tip/Casing Contact Problems
,”
J. Sound Vib.
,
538
, p.
117219
.10.1016/j.jsv.2022.117219
8.
Petrov
,
E. P.
,
2017
, “
Stability Analysis of Multiharmonic Nonlinear Vibrations for Large Models of Gas Turbine Engine Structures With Friction and Gaps
,”
ASME J. Eng. Gas Turbines Power
,
139
(
2
), p.
022508
.10.1115/1.4034353
9.
Salles
,
L.
,
Staples
,
B.
,
Hoffmann
,
N.
, and
Schwingshackl
,
C.
,
2016
, “
Continuation Techniques for Analysis of Whole Aeroengine Dynamics With Imperfect Bifurcations and Isolated Solutions
,”
Nonlinear Dyn.
,
86
(
3
), pp.
1897
1911
.10.1007/s11071-016-3003-y
10.
Petrov
,
E. P.
,
2016
, “
Analysis of Bifurcations in Multiharmonic Analysis of Nonlinear Forced Vibrations of Gas Turbine Engine Structures With Friction and Gaps
,”
ASME J. Eng. Gas Turbines Power
,
138
(
10
), p.
102502
.10.1115/1.4032906
11.
Vadcard
,
T.
,
Colaïtis
,
Y.
,
Batailly
,
A.
, and
Thouverez
,
F.
,
2022
, “
Assessment of Two Harmonic Balance Method-Based Numerical Strategies for Blade-Tip/Casing Interactions: Application to Nasa Rotor67
,”
ASME J. Eng. Gas Turbines Power
,
144
(
12
), p.
121004
.10.1115/1.4055416
12.
Detroux
,
T.
,
Renson
,
L.
,
Masset
,
L.
, and
Kerschen
,
G.
,
2015
, “
The Harmonic Balance Method for Bifurcation Analysis of Large-Scale Nonlinear Mechanical Systems
,”
Comput. Methods Appl. Mech. Eng.
,
296
, pp.
18
38
.10.1016/j.cma.2015.07.017
13.
Laxalde
,
D.
, and
Thouverez
,
F.
,
2009
, “
Complex Non-Linear Modal Analysis for Mechanical Systems: Application to Turbomachinery Bladings With Friction Interfaces
,”
J. Sound Vib.
,
322
(
4–5
), pp.
1009
1025
.10.1016/j.jsv.2008.11.044
14.
Sun
,
Y.
,
Yuan
,
J.
,
Vizzaccaro
,
A.
, and
Salles
,
L.
,
2021
, “
Comparison of Different Methodologies for the Computation of Damped Nonlinear Normal Modes and Resonance Prediction of Systems With Non-Conservative Nonlinearities
,”
Nonlinear Dyn.
,
104
(
4
), pp.
3077
3107
.10.1007/s11071-021-06567-0
15.
Krack
,
M.
,
2015
, “
Nonlinear Modal Analysis of Nonconservative Systems: Extension of the Periodic Motion Concept
,”
Comput. Struct.
,
154
, pp.
59
71
.10.1016/j.compstruc.2015.03.008
16.
Detroux
,
T.
,
Noël
,
J.-P.
,
Virgin
,
L. N.
, and
Kerschen
,
G.
,
2018
, “
Experimental Study of Isolas in Nonlinear Systems Featuring Modal Interactions
,”
PLoS One
,
13
(
3
), p.
e0194452
.10.1371/journal.pone.0194452
17.
Petrov
,
E. P.
,
2019
, “
A Method for Parametric Analysis of Stability Boundaries for Nonlinear Periodic Vibrations of Structures With Contact Interfaces
,”
ASME J. Eng. Gas Turbines Power
,
141
(
3
), p.
031023
.10.1115/1.4040850
18.
Mangussi
,
F.
, and
Zanette
,
D. H.
,
2016
, “
Internal Resonance in a Vibrating Beam: A Zoo of Nonlinear Resonance Peaks
,”
PLoS One
,
11
(
9
), p.
e0162365
.10.1371/journal.pone.0162365
19.
Vadcard
,
T.
,
Thouverez
,
F.
, and
Batailly
,
A.
,
2023
, “
Computation of Isolated Periodic Solutions for Forced Response Blade-Tip/Casing Contact Problems
,”
ASME J. Eng. Gas Turbines Power
,
146
(
4
), p.
041011
.10.1115/1.4063704
20.
Sarrouy
,
E.
,
Grolet
,
A.
, and
Thouverez
,
F.
,
2011
, “
Global and Bifurcation Analysis of a Structure With Cyclic Symmetry
,”
Int. J. Non Linear Mech.
,
46
(
5
), pp.
727
737
.10.1016/j.ijnonlinmec.2011.02.005
21.
Grolet
,
A.
, and
Thouverez
,
F.
,
2015
, “
Computing Multiple Periodic Solutions of Nonlinear Vibration Problems Using the Harmonic Balance Method and Groebner Bases
,”
Mech. Syst. Sig. Process.
,
52-53
, pp.
529
547
.10.1016/j.ymssp.2014.07.015
22.
Lamarque
,
C.-H.
, and
Savadkoohi
,
A. T.
,
2022
, “
Algebraic Techniques and Perturbation Methods to Approach Frequency Response Curves
,”
Int. J. Non Linear Mech.
,
144
, p.
104096
.10.1016/j.ijnonlinmec.2022.104096
23.
Heinze
,
T.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2020
, “
Global Detection of Detached Periodic Solution Branches of Friction-Damped Mechanical Systems
,”
Nonlinear Dyn.
,
99
(
3
), pp.
1841
1870
.10.1007/s11071-019-05425-4
24.
Benacchio
,
S.
,
Giraud-Audine
,
C.
, and
Thomas
,
O.
,
2022
, “
Effect of Dry Friction on a Parametric Nonlinear Oscillator
,”
Nonlinear Dyn.
,
108
(
2
), pp.
1005
1026
.10.1007/s11071-022-07233-9
25.
Cenedese
,
M.
, and
Haller
,
G.
,
2020
, “
How Do Conservative Backbone Curves Perturb Into Forced Responses? A Melnikov Function Analysis
,”
Proc. R. Soc. A.
,
476
(
2234
), p.
20190494
.10.1098/rspa.2019.0494
26.
Vadcard
,
T.
,
Thouverez
,
F.
, and
Batailly
,
A.
,
2024
, “
On the Detection of Nonlinear Normal Mode-Related Isolated Branches of Periodic Solutions for High-Dimensional Nonlinear Mechanical Systems With Frictionless Contact Interfaces
,”
Comput. Methods Appl. Mech. Eng.
,
419
, p.
116641
.10.1016/j.cma.2023.116641
27.
Hill
,
T. L.
,
Cammarano
,
A.
,
Neild
,
S. A.
, and
Wagg
,
D. J.
,
2015
, “
Interpreting the Forced Responses of a Two-Degree-of-Freedom Nonlinear Oscillator Using Backbone Curves
,”
J. Sound Vib.
,
349
, pp.
276
288
.10.1016/j.jsv.2015.03.030
28.
Yuan
,
J.
,
Sun
,
Y.
,
Schwingshackl
,
C.
, and
Salles
,
L.
,
2022
, “
Computation of Damped Nonlinear Normal Modes for Large Scale Nonlinear Systems in a Self-Adaptive Modal Subspace
,”
Mech. Syst. Sig. Process
,
162
, p.
108082
.10.1016/j.ymssp.2021.108082
29.
Sun
,
Y.
,
Vizzaccaro
,
A.
,
Yuan
,
J.
, and
Salles
,
L.
,
2021
, “
An Extended Energy Balance Method Arfor Resonance Prediction in Forced Response of Systems With Non-Conservative Nonlinearities Using Damped Nonlinear Normal Mode
,”
Nonlinear Dyn.
,
103
(
4
), pp.
3315
3333
.10.1007/s11071-020-05793-2
30.
Vadcard
,
T.
,
Batailly
,
A.
, and
Thouverez
,
F.
,
2022
, “
On Harmonic Balance Method-Based Lagrangian Contact Formulations for Vibro-Impact Problems
,”
J. Sound Vib.
,
531
, p.
116950
.10.1016/j.jsv.2022.116950
31.
Von Groll
,
G.
, and
Ewins
,
D.
,
2001
, “
The Harmonic Balance Method With Arc-Length Continuation in Rotor/Stator Contact Problems
,”
J. Sound Vib.
,
241
(
2
), pp.
223
233
.10.1006/jsvi.2000.3298
32.
Nacivet
,
S.
,
Pierre
,
C.
,
Thouverez
,
F.
, and
Jezequel
,
L.
,
2003
, “
A Dynamic Lagrangian Frequency–Time Method for the Vibration of Dry-Friction-Damped Systems
,”
J. Sound Vib.
,
265
(
1
), pp.
201
219
.10.1016/S0022-460X(02)01447-5
33.
Förster
,
A.
, and
Krack
,
M.
,
2016
, “
An Efficient Method for Approximating Resonance Curves of Weakly-Damped Nonlinear Mechanical Systems
,”
Comput. Struct.
,
169
, pp.
81
90
.10.1016/j.compstruc.2016.03.003
34.
Salles
,
L.
,
Gouskov
,
A. M.
,
Blanc
,
L.
,
Thouverez
,
F.
, and
Jean
,
P.
,
2010
, “
Dynamic Analysis of Fretting-Wear in Joint Interface by a Multiscale Harmonic Balance Method Coupled With Explicit or Implicit Integration Schemes
,”
ASME
Paper No. GT2010-23264.10.1115/GT2010-23264
35.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
.10.1115/1.3176036
36.
Salles
,
L.
,
Blanc
,
L.
,
Thouverez
,
F.
,
Gouskov
,
A. M.
, and
Jean
,
P.
,
2009
, “
Dynamic Analysis of a Bladed Disk With Friction and Fretting-Wear in Blade Attachments
,”
ASME
Paper No. GT2009-60151.10.1115/GT2009-60151
37.
Rosenberg
,
R. M.
,
1960
, “
Normal Modes of Nonlinear Dual-Mode Systems
,”
ASME J. Appl. Mech.
,
27
(
2
), pp.
263
268
.10.1115/1.3643948
38.
Shaw
,
S.
, and
Pierre
,
C.
,
1991
, “
Non-Linear Normal Modes and Invariant Manifolds
,”
J. Sound Vib.
,
150
(
1
), pp.
170
173
.10.1016/0022-460X(91)90412-D
39.
Urasek
,
D. C.
, and
Gorrell
,
W. T.
,
1979
, “
Performance of Two-Stage Fan Having Low-Aspect-Ratio First-Stage Rotor Blading
,” accessed Oct. 17, 2024, https://ntrs.nasa.gov/citations/19790018972
40.
Kojtych
,
S.
, and
Batailly
,
A.
,
2024
, “
Open NASA Blade Models for Nonlinear Dynamics Simulations
,”
ASME J. Eng. Gas Turbines Power
,
146
(
1
), p.
011009
.10.1115/1.4063323
41.
Doi
,
H.
, and
Alonso
,
J. J.
,
2002
, “
Fluid/Structure Coupled Aeroelastic Computations for Transonic Flows in Turbomachinery
,”
ASME
Paper No. 2002-30313.101115/GT2002-30313.
42.
Piollet
,
E.
,
Nyssen
,
F.
, and
Batailly
,
A.
,
2019
, “
Blade/Casing Rubbing Interactions in Aircraft Engines: Numerical Benchmark and Design Guidelines Based on NASA Rotor 37
,”
J. Sound Vib.
,
460
, p.
114878
.10.1016/j.jsv.2019.114878
43.
Craig
,
R. R.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
44.
Laity
,
D.
,
1980
, “
Stage 67 Rotor and Stage 67 Casing Half Stators Mounted,” Records of the National Aeronautics and Space Administration, 1903–2006, Photographs Relating to Agency Activities, Facilities and Personnel, 1973–2013
, accessed Oct. 17, 2024, https://catalog.archives.gov/id/17500553
You do not currently have access to this content.