Abstract

Fully flexible large diesel-gas dual fuel engines are known for their ability to be operated in pure diesel mode as well as in dual fuel mode for applications such as power generation and transportation. Dual fuel operation with these engines is characterized by a premixed gas–air cylinder charge and compression ignition via a pilot diesel injection into the combustion chamber. Proven benefits such as the flexibility to adapt the type of fuel to the market, fail-safe operation and relatively low engine-out nitrogen oxides emissions come at the price of downsides such as comparatively low efficiency and combustion stability. To overcome these detriments, an in-depth understanding of the fundamental processes and effects must be obtained. The aim of this paper is therefore to study specific diesel-gas combustion phenomena in detail. The focus is on investigating the influence of the diesel fuel injection timing on mixture formation, ignition, and combustion of both diesel and natural gas–air mixture at nominal engine load and an energetic diesel fraction of only 1%. A combined approach consisting of single-cylinder research engine (SCE) testing and three-dimensional computational fluid dynamics (3D-CFD) simulation was followed. In the first step, experimental investigations were carried out on a large high-speed SCE with a displacement of 6.24 dm³ per cylinder and at a nominal indicated mean effective pressure (IMEP) of 24 bar. The combustion chamber of the SCE was optically instrumented with an endoscope and an illumination device. This provided detailed insight into the fuel injection process and combustion phenomena in the early combustion phase while being minimal invasive and withstanding the high mechanical and thermal loads at full load engine operation. To supplement the SCE measurement data and to enhance interpretation of the results, injection rate curves of the diesel injector were measured on a separate test rig. In the second step, the experimental data were used to calibrate and validate a corresponding 3D-CFD simulation model. Further insight into the entire combustion process was obtained from the results of subsequent simulations. The combined results comprehensively illustrate how the injection timing of the pilot diesel fuel affects mixture formation, ignition, and the combustion process. Besides basic SCE performance and emission results, the spatially and temporally resolved results from 3D-CFD simulation provide key information about the processes in the combustion chamber. While it is already known from the existing literature that at very early pilot fuel injections, combustion phasing is not directly linked to injection timing, the 3D-CFD results allow an analysis and detailed explanation of this behavior. It has been found that varying the injection timing has a considerable impact on ignition delay due to the different in-cylinder conditions at the start of injection. Ignition delay in turn affects local mixture quality at start of combustion (and vice versa), which results in significantly different combustion processes and related performance indicators. This detailed understanding serves as the basis for future research that must investigate the impact of additional influencing factors such as combustion chamber and injection nozzle geometries as well as pilot fuel injection strategies (e.g., multiple injections per cycle) to holistically improve the diesel-gas combustion concept in a target-oriented way.

References

1.
Redtenbacher
,
C.
,
Kiesling
,
C.
,
Wimmer
,
A.
,
Sprenger
,
F.
,
Fasching
,
P.
, and
Eichlseder
,
H.
,
2016
, “
Dual Fuel Brennverfahren - Ein zukunftsweisendes Konzept vom PKW- bis zum Großmotorenbereich?
,”
Proceedings 37. Internationales Wiener Motorensymposium
, Vienna, Austria, Apr. 28–29, pp.
403
428
.
2.
Mooser
,
D.
,
2007
, “
Brenngase Und Gasmotoren
,”
Handbuch Dieselmotoren
,
K.
Mollenhauer
, and
H.
Tschöke
, eds.,
Springer
,
Berlin, Germany
.
3.
Mohr
,
H.
, and
Frobenius
,
M.
,
2014
, “
Optimierung Von Diesel-/Gas-Großmotoren Für Unterschiedlichste Anwendungen
,” Die Zukunft Der Großmotoren III, 3. Rostocker Großmotorentagung,
Rostock
,
Germany
, Sept. 18–19, pp.
138
149
.
4.
Buchholz
,
B.
,
2014
, “
Saubere Großmotoren Für Die Zukunft - Herausforderung Für Die Forschung
,” Die Zukunft Der Großmotoren III, 3. Rostocker Großmotorentagung,
Rostock
,
Germany
, Sept. 18–19, pp.
1
14
.
5.
Krishnan
,
S. R.
,
Srinivasan
,
K. K.
,
Singh
,
S.
,
Gong
,
W.
,
Fiveland
,
S.
,
Bell
,
S.
,
Midkiff
,
K.
, and
Willi
,
M.
,
2003
, “
Strategies for Reduced NOx Emissions in Pilot-Ignited Natural Gas Engines
,”
ASME J. Eng. Gas Turbines Power
,
126
(
3
), pp.
665
671
.10.1115/1.1760530
6.
Raihan
,
M.
,
Guerry
,
E.
,
Dwivedi
,
U.
,
Srinivasan
,
K. K.
, and
Krishnan
,
S. R.
,
2015
, “
Experimental Analysis of Diesel-Ignited Methane Dual-Fuel Low-Temperature Combustion in a Single-Cylinder Diesel Engine
,”
ASCE J. Energy Eng.
,
141
(
2
), pp.
12
71
.10.1061/(ASCE)EY.1943-7897.0000235
7.
Laiminger
,
S.
,
Trapp
,
C.
,
Schaumberger
,
H.
, and
Fouquet
,
M.
,
2011
, “
Die Nächste Generation Von Jenbacher Gasmotoren Von GE - Die Wegweisende Kombination Von Zweistufiger Aufladung Und Innovativen Brennverfahren
,”
Proceedings of the 7th Dessau Gas Engine Conference
, Dessau-Roßlau, Germany, Mar. 24–25, pp.
39
48
.
8.
Wimmer
,
A.
,
Golloch
,
R.
, and
Auer
,
M.
,
2019
, “
Großgasmotoren
,”
Grundlagen Verbrennungsmotoren; Funktionsweise Und Alternative Antriebssysteme; Verbrennung, Messtechnik Und Simulation
,
G.
Merker
, and
R.
Teichmann
, eds.,
Springer Vieweg
,
Wiesbaden, Germany
.
9.
Kiesling
,
C.
,
Redtenbacher
,
C.
,
Kirsten
,
M.
,
Wimmer
,
A.
,
Imhof
,
D.
,
Berger
,
I.
, and
Garcia-Oliver
,
J. M.
,
2016
, “
Detailed Assessment of an Advanced Wide Range Diesel Injector for Dual Fuel Operation of Large Engines
,”
CIMAC Congress 2016
, Helsinki, Finland, June 6–10, Paper No. 078.https://www.lec.at/news-entries/detailed-assessment-of-an-advanced-wide-range-diesel-injector-for-dual-fuel-operation-of-large-engines/?lang=en
10.
Redtenbacher
,
C.
,
Kiesling
,
C.
,
Malin
,
M.
,
Wimmer
,
A.
,
Pastor
,
J. V.
, and
Pinotti
,
M.
,
2018
, “
Potential and Limitations of Dual Fuel Operation of High Speed Large Engines
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032205
.10.1115/1.4038464
11.
Redtenbacher
,
C.
,
Kiesling
,
C.
,
Malin
,
M.
,
Wimmer
,
A.
,
Pastor
,
J. V.
, and
Pinotti
,
M.
,
2016
, “
Potential and Limitations of Dual Fuel Operation of High Speed Large Engines
,”
ASME
Paper No. ICEF2016-9359.10.1115/ICEF2016-9359
12.
Redtenbacher
,
C.
,
Kiesling
,
C.
,
Malin
,
M.
, and
Wimmer
,
A.
,
2017
, “
Requirements for Diesel Pilot Injection of Diesel-Gas Dual Fuel Engines to Achieve the Highest Efficiency With the Lowest Emissions
,”
Proceedings of the 10th Dessau Gas Engine Conference
,
Dessau-Roßlau
,
Germany
, Apr. 6–7, pp.
127
145
.
13.
Eichmeier
,
J.
,
Wagner
,
U.
, and
Spicher
,
U.
,
2012
, “
Controlling Gasoline Low Temperature Combustion by Diesel Micro Pilot Injection
,”
ASME J. Eng. Gas Turbines Power
,
134
(
7
), p.
072802
.10.1115/1.4005997
14.
Krishnan
,
S. R.
,
Biruduganti
,
M.
,
Mo
,
Y.
,
Bell
,
S.
, and
Midkiff
,
K. C.
,
2002
, “
Performance and Heat Release Analysis of a Pilot-Ignited Natural Gas Engine
,”
Int. J. Engine Res.
,
3
(
3
), pp.
171
184
.10.1243/14680870260189280
15.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
,
Singh
,
S.
,
Midkiff
,
K.
,
Bell
,
S.
,
Gong
,
W.
,
Fiveland
,
S.
, and
Willi
,
M.
,
2006
, “
The Advanced Injection Low Pilot Ignited Natural Gas Engine: A Combustion Analysis
,”
ASME J. Eng. Gas Turbines Power
,
128
(
1
), pp.
213
218
.10.1115/1.1915428
16.
Srinivasan
,
K. K.
,
Krishnan
,
S. R.
, and
Qi
,
Y.
,
2014
, “
Cyclic Combustion Variations in Dual Fuel Partially Premixed Pilot-Ignited Natural Gas Engines
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
012003
.10.1115/1.4024855
17.
Tomita
,
E.
,
Kawahara
,
N.
,
Piao
,
Z.
, and
Yamaguchi
,
R.
,
2002
, “
Effects of EGR and Early Injection of Diesel Fuel on Combustion Characteristics and Exhaust Emissions in a Methane Dual Fuel Engine
,”
SAE
Paper No. 2002-01-2723.10.4271/2002-01-2723
18.
Wimmer
,
A.
,
2002
,
Analyse Und Simulation Des Arbeitsprozesses Von Verbrennungsmotoren (Fortschritt-Berichte VDI Reihe 12, Nr. 520)
,
VDI Verlag
,
Düsseldorf, Germany
.
19.
Winklhofer
,
E.
,
2019
, “
Optische Messverfahren
,”
Grundlagen Verbrennungsmotoren; Funktionsweise Und Alternative Antriebssysteme; Verbrennung, Messtechnik Und Simulation
,
G.
Merker
, and
R.
Teichmann
, eds.,
Springer Vieweg
,
Wiesbaden, Germany
.
20.
Waldenmaier
,
U.
,
Celik
,
O.
,
Metzger
,
J.
,
Auer
,
M.
, and
Stiesch
,
G.
,
2012
, “
Combustion Development for Large Diesel Engines With Support of Optical Measurement Techniques and CFD-Simulations
,”
Proceedings of the 10th International Symposium on Combustion Diagnostics
, Baden-Baden, Germany, May 22–23, pp.
65
75
.
21.
Unfug
,
F.
,
2013
, “
Experimentelle Und Numerische Untersuchung Der Verbrennung Eines Mittelschnelllaufenden 4-Takt Dieselmotors
,” Doctoral thesis,
Karlsruher Institut für Technologie
,
Karlsruhe, Germany
.
22.
Magno
,
A.
,
Mancaruso
,
E.
, and
Vaglieco
,
B.
,
2015
, “
Combustion Analysis of Dual Fuel Operation in Single Cylinder Research Engine Fuelled With Methane and Diesel
,”
SAE
Paper No. 2015-24-2461.10.4271/2015-24-2461
23.
Di Iorio
,
S.
,
Magno
,
A.
,
Mancaruso
,
E.
, and
Vaglieco
,
B.
,
2016
, “
Diesel/Methane Dual Fuel Strategy to Improve Environmental Performance of Energy Power Systems
,”
Int. J. Heat Technol.
,
34
(
S2
), pp.
S581
S588
.10.18280/ijht.34S254
24.
Di Iorio
,
S.
,
Magno
,
A.
,
Mancaruso
,
E.
, and
Vaglieco
,
B. M.
,
2017
, “
Analysis of the Effects of Diesel/Methane Dual Fuel Combustion on Nitrogen Oxides and Particle Formation Through Optical Investigation in a Real Engine
,”
Fuel Process. Technol.
,
159
, pp.
200
210
.10.1016/j.fuproc.2017.01.009
25.
Tomita
,
E.
,
Fukatani
,
N.
,
Kawahara
,
N.
,
Maruyama
,
K.
, and
Komoda
,
T.
,
2016
, “
Combustion Characteristics and Performance of Supercharged Pyrolysis Gas Engine With Micro-Pilot Ignition
,”
CIMAC Congress 2007
, Vienna, Austria, May 21–24, Paper No. 178.
26.
Dronniou
,
N.
,
Kashdan
,
J.
,
Lecointe
,
B.
,
Sauve
,
K.
, and
Soleri
,
D.
,
2014
, “
Optical Investigation of Dual-Fuel CNG/Diesel Combustion Strategies to Reduce CO2 Emissions
,”
SAE
Paper No. 2014-01-1313.10.4271/2014-01-1313
27.
Merts
,
M.
,
Derafshzan
,
S.
,
Hyvönen
,
J.
,
Richter
,
M.
,
Lundgren
,
M.
, and
Verhelst
,
S.
,
2021
, “
An Optical Investigation of Dual Fuel and RCCI Pilot Ignition in a Medium Speed Engine
,”
Fuel Commun.
,
9
, p.
100037
.10.1016/j.jfueco.2021.100037
28.
Splitter
,
D.
,
Kokjohn
,
S.
,
Rein
,
K.
,
Hanson
,
R.
,
Sanders
,
S.
, and
Reitz
,
R.
,
2010
, “
An Optical Investigation of Ignition Processes in Fuel Reactivity Controlled PCCI Combustion
,”
SAE
Paper No. 2010-01-0345.10.4271/2010-01-0345
29.
Pischinger
,
R.
,
1968
, “
Bombenversuche Über Gasverbrennungen
,”
Habilitationsschrift, Technische Hochschule Graz
,
Graz, Austria
.
30.
Schlatter
,
S.
,
Schneider
,
B.
,
Wright
,
Y.
, and
Boulouchos
,
K.
,
2012
, “
Experimental Study of Ignition and Combustion Characteristics of a Diesel Pilot Spray in a Lean Premixed Methane/Air Charge Using a Rapid Compression Expansion Machine
,”
SAE
Paper No. 2012-01-0825.10.4271/2012-01-0825
31.
Imhof
,
D.
, and
Takasaki
,
K.
,
2012
, “
Visual Combustion Research Using the Rapid Compression Expansion Machine
,”
MTZ Industrial
, 8(2012), pp.
28
39
.
32.
Tsuru
,
D.
,
Kigunaga
,
S.
,
Koga
,
T.
,
Takasaki
,
K.
,
Pirker
,
G.
, and
Wimmer
,
A.
,
2016
, “
Application of Large-Sized RCEM to a Study on Combustion in Dual Fuel Gas Engine Operation
,”
Die Zukunft Der Großmotoren IV
,
Rostocker Großmotorentagung
,
Rostock, Germany
, Sept. 15–16, pp.
294
305
.https://graz.elsevierpure.com/en/publications/application-of-large-sized-rcem-to-a-study-on-combustion-in-dual-
33.
Pischinger
,
R.
,
Klell
,
M.
, and
Sams
,
T.
,
2009
,
Thermodynamik Der Verbrennungskraftmaschine (Der Fahrzeugantrieb)
,
H.
List
, ed.,
Springer
,
Vienna, Austria
.
34.
Eder
,
L.
,
Kiesling
,
C.
,
Priesching
,
P.
,
Pirker
,
G.
, and
Wimmer
,
A.
,
2017
, “
Multidimensional Modeling of Injection and Combustion Phenomena in a Diesel Ignited Gas Engine
,”
SAE
Paper No. 2017-01-0559. 10.4271/2017-01-0559
35.
Eder
,
L.
,
Kiesling
,
C.
,
Pirker
,
G.
, and
Wimmer
,
A.
,
2017
, “
Development and Validation of a Reduced Reaction Mechanism for CFD Simulation of Diesel Ignited Gas Engines
,”
Engine Combustion Processes, Current Problems and Modern Techniques (XIIIth Congress)
, Ludwigsburg, Germany, Mar. 16–17, pp.
241
252
.https://www.researchgate.net/publication/315335663_Development_and_Validation_of_a_Reduced_Reaction_Mechanism_for_CFD_Simulation_of_Diesel_Ignited_Gas_Engine
36.
Kokjohn
,
S.
,
Hanson
,
R.
,
Splitter
,
D.
, and
Reitz
,
R.
,
2011
, “
Fuel Reactivity Controlled Compression Ignition (RCCI): A Pathway to Controlled High-Efficiency Clean Combustion
,”
Int. J. Engine Res.
,
12
(
3
), pp.
209
226
.10.1177/1468087411401548
37.
Nieman
,
D.
,
Dempsey
,
A.
, and
Reitz
,
R.
,
2012
, “
Heavy-Duty RCCI Operation Using Natural Gas and Diesel
,”
SAE
Paper No. 2012-01-0379.10.4271/2012-01-0379
38.
Maghbouli
,
A.
,
Khoshbakhti
,
Saray
,
R.
,
Shafee
,
S.
, and
Ghafouri
,
J.
,
2013
, “
Numerical Study of Combustion and Emission Characteristics of Dual-Fuel Engines Using 3D-CFD Models Coupled With Chemical Kinetics
,”
Fuel
,
106
, pp.
98
105
.10.1016/j.fuel.2012.10.055
39.
Maghbouli
,
A.
,
Shafee
,
S.
,
Khoshbakhti
,
Saray
,
R.
,
Yang
,
W.
,
Hosseini
,
V.
, and
An
,
H.
,
2013
, “
A Multi-Dimensional CFD-Chemical Kinetics Approach in Detection and Reduction of Knocking Combustion in Diesel-Natural Gas Dual-Fuel Engines Using Local Heat Release Analysis
,”
SAE
Paper No. 2013-01-0865.10.4271/2013-01-0865
40.
Donateo
,
T.
,
Carlucci
,
A.
,
Strafella
,
L.
, and
Laforgia
,
D.
,
2014
, “
Experimental Validation of a CFD Model and an Optimization Procedure for Dual Fuel Engines
,”
SAE
Paper No. 2014-01-1314. 10.4271/2014-01-1314
41.
Hockett
,
A.
,
2015
, “
A Computational and Experimental Study on Combustion Processes in Natural Gas/Diesel Dual Fuel Engines
,” Doctoral thesis,
Colorado State University
, Fort Collins, CO.
42.
Abidin
,
Z.
,
Florea
,
R.
, and
Callahan
,
T.
,
2016
, “
Dual Fuel Combustion Study Using 3D CFD Tool
,”
SAE
Paper No. 2016-01-0595. 10.4271/2016-01-0595
43.
Liu
,
X.
,
Kokjohn
,
S.
,
Li
,
Y.
,
Wang
,
H.
,
Li
,
H.
, and
Yao
,
M.
,
2019
, “
A Numerical Investigation of the Combustion Kinetics of Reactivity Controlled Compression Ignition (RCCI) Combustion in an Optical Engine
,”
Fuel
,
241
, pp.
753
766
.10.1016/j.fuel.2018.12.068
44.
Colin
,
O.
, and
Benkenida
,
A.
,
2004
, “
The 3-Zones Extended Coherent Flame Model (ECFM3Z) for Computing Premixed/Diffusion Combustion
,”
Oil Gas Sci. Technol.
,
59
(
6
), pp.
593
609
.10.2516/ogst:2004043
45.
Belaid-Saleh
,
H.
,
Jay
,
S.
,
Kashdan
,
J.
,
Ternel
,
C.
, and
Mounaim-Rousselle
,
C.
,
2013
, “
Numerical and Experimental Investigation of Combustion Regimes in a Dual Fuel Engine
,”
SAE
Paper No. 2013-24-0015. 10.4271/2013-24-0015
46.
Li
,
Y.
,
Li
,
H.
,
Guo
,
H.
,
Li
,
Y.
, and
Yao
,
M.
,
2017
, “
A Numerical Investigation on Methane Combustion and Emissions From a Natural Gas-Diesel Dual Fuel Engine Using CFD Model
,”
Appl. Energy
,
205
, pp.
153
162
.10.1016/j.apenergy.2017.07.071
47.
Pastor
,
J. V.
,
Payri
,
R.
,
García-Oliver
,
J. M.
, and
Briceno
,
F.
,
2011
, “
Analysis of Transient Liquid and Vapor Phase Penetration for Diesel Sprays Under Variable Injection Conditions
,”
Atomization Sprays
,
21
(
6
), pp.
503
520
.10.1615/AtomizSpr.2011003721
48.
Nickl
,
A.
,
2017
, “
Optische Untersuchungen Der Dual Fuel Verbrennung
,” Master's thesis,
Graz University of Technology
,
Graz, Austria
.
49.
Eder
,
L.
,
Ban
,
M.
,
Pirker
,
G.
,
Vujanovic
,
M.
,
Priesching
,
P.
, and
Wimmer
,
A.
,
2018
, “
Development and Validation of 3D-CFD Injection and Combustion Models for Dual Fuel Combustion in Diesel Ignited Large Gas Engines
,”
Energies
,
11
(
3
), p.
643
.10.3390/en11030643
50.
Hanjalic
,
K.
,
Popovac
,
M.
, and
Hadziabdic
,
M.
,
2004
, “
A Robust Near-Wall Elliptic-Relaxation Eddy-Viscosity Turbulence Model for CFD
,”
Int. J. Heat Fluid Flow
,
25
(
6
), pp.
1047
1051
.10.1016/j.ijheatfluidflow.2004.07.005
51.
AVL List GmbH,
2014
, “
Standard Species Transport Model Variables and Equations
,”
FIRETM Software Documentation, Main Program Modules
,
AVL List GmbH
,
Graz, Austria
.
52.
Dukowicz
,
J.
,
1979
, “
Quasi-Steady Droplet Phase Change in the Presence of Convection
,”
Los Alamos Scientific Laboratory Report, Los Alamos National Laboratory, Los Alamos
, NM, Report No. LA-7997-MS.
53.
Reitz
,
R.
,
1987
, “
Modeling Atomization Processes in High-Pressure Vaporizing Sprays
,”
Atomisation Spray Technol.
,
3
, pp.
309
337
.
54.
O'Rourke
,
P. J.
,
1981
, “
Collective Drop Effects on Vaporizing Liquid Sprays
,” Doctoral thesis,
Princeton University
,
Princeton, NJ
.
55.
AVL List GmbH,
2014
, “
Activate Equations FIRE CFD Solver v2014.2 Users Guide
,”
AVL List GmbH
,
Graz, Austria
.
56.
Colin
,
O.
,
Benkenida
,
A.
, and
Angelberger
,
C.
,
2003
, “
3D Modeling of Mixing, Ignition and Combustion Phenomena in Highly Stratified Gasoline Engines
,”
Oil Gas Sci. Technol.
,
58
(
1
), pp.
47
62
.10.2516/ogst:2003004
57.
Marko
,
F.
,
Koenig
,
G.
,
Goldmann
,
A.
, and
Dinkelacker
,
F.
,
2017
, “
Spektroskopische Untersuchungen Des Gelben Flammenleuchtens Bei Vorgemischter Ottomotorischer Verbrennung
,”
Engine Combustion Processes, Current Problems and Modern Techniques (XIIIth Congress)
,
Ludwigsburg, Germany
, Mar. 16–17, pp.
197
209
.
58.
Pittermann
,
R.
,
2008
, “
Spectroscopic Analysis of the Combustion in Diesel and Gas Engines
,”
MTZ
,
69
(
7–8
), pp.
66
73
.10.1007/BF03227907
59.
Photron Limited
,
2024
, “
Fastcam SA-X2 Hardware Manual REV1.12E
,”
Photron Limited,
Tokyo
, Japan.
60.
Ciezki
,
H.
, and
Adomeit
,
G.
,
1993
, “
Shock-Tube Investigations of Self-Ignition of n-Heptane-Air Mixtures Under Engine Relevant Conditions
,”
Combust. Flame
,
93
(
4
), pp.
421
433
.10.1016/0010-2180(93)90142-P
61.
Pfahl
,
U.
,
Fieweger
,
K.
, and
Adomeit
,
G.
,
1996
, “
Self-Ignition of Diesel-Relevant Hydrocarbon-Air Mixtures Under Engine Conditions
,”
Symp. (Int.) Combust.
,
26
(
1
), pp.
781
789
.10.1016/S0082-0784(96)80287-6
62.
Warter
,
S.
,
Laubichler
,
C.
,
Kiesling
,
C.
,
Kober
,
M.
,
Wimmer
,
A.
,
Coppo
,
M.
,
Laurenzano
,
D.
, and
Negri
,
C.
,
2023
, “
Data-Driven Prediction of Key Combustion Parameters Based on an Intelligent Diesel Fuel Injector for Large Engine Applications
,”
SAE
Paper No. 2023-01-0291. 10.4271/2023-01-0291
63.
Henrion
,
T.
,
Moesenbichler
,
F.
,
Redtenbacher
,
C.
,
Malin
,
M.
,
Bernhaupt
,
M.
,
Wrede
,
R.
, and
Stein
,
J.-O.
,
2023
, “
Injection Rate Control Strategy With Bosch Smart CR Injector for Optimized Injection Performance
,”
CIMAC Congress 2023
,
Busan, South Korea
, June 12–16, Paper No. 063.https://graz.elsevierpure.com/en/publications/injection-rate-control-strategy-with-bosch-smart-cr-injector-for-
64.
Laubichler
,
C.
,
Kiesling
,
C.
,
Warter
,
S.
,
Kober
,
M.
,
Wimmer
,
A.
,
Coppo
,
M.
,
Negri
,
C.
,
Laurenzano
,
D.
,
Koegeler
,
H.-M.
, and
Kammerdiener
,
T.
,
2024
, “
Impact of Injection Valve Condition on Data-Driven Prediction of Key Combustion Parameters Based on an Intelligent Diesel Fuel Injector for Large Engine Applications
,”
SAE
Paper No. 2024-01-2836. 10.4271/2024-01-2836
You do not currently have access to this content.