Abstract

The global drive toward renewable energy is imposing challenging operating requirements on power turbines. Flexible load-leveling applications must accept more frequent and demanding start-stop cycles. Full transient analyses are too computationally expensive for real-time simulation across all operating regimes so monitoring relies on sparse physical measurements. Alone, these sparse data lack the fidelity for real-time prediction of a complex thermal field. A novel hybrid methodology is proposed, coupling data across a range of fidelities to bridge the limitations in the individual analyses. Combining several fidelity methods in parallel; low-order models, corrected by real-time physical measurements, are calibrated with high-fidelity simulations. A newly developed low-order thermal network code is used to predict the thermal field in real-time. High-fidelity flow characteristics are routinely transferred to the decoupled low-order solution. A critical enabling feature of this hybrid approach is the fast data interpolation between differing fidelity numerical simulations. This paper evaluates a spatial Kriging method for robust data transfer between two different fidelity mesh, tested in the case of thermal profile prediction of a power turbine. Additionally, a novel coordinate-based hash mapping process is demonstrated for the fast high-to-low fidelity data transfer. Localized hashing allows independent, parallel, nearest neighbor search at significantly reduced computational cost. The demonstrated method facilitates fast mesh pairing, necessary to support the real-time hybrid method for thermal field prediction during turbine transient operation.

References

1.
Council, World Energy
,
2016
, “
World Energy Scenarios 2016
,” World Energy Council, London, UK, accessed Oct. 11, 2023, www.worldenergy.org/publications
2.
OECD-IEA
,
2022
, “
World Energy Outlook 2022
,” OECD Publishing, Paris, accessed Oct. 11, 2023, https://doi.org/10.1787/3a469970-en
3.
British Petroleum
,
2022
, “
BP Statistical Review of World Energy 2022
,” BP Statistical Review, 71st ed., BP p.l.c, London, UK, accessed Oct. 11, 2023, https://www.bp.com/content/dam/bp/business-sites/en/global/corporate/pdfs/energy-economics/statistical-review/bp-stats-review-2022-full-report.pdf
4.
Della Villa
,
S. A.
,
2018
, “
Energy Innovation: A Focus on Power Generation Data Capture and Analytics in a Competitive Market
,”
ASME
Paper No. GT2018-75030. 10.1115/GT2018-75030
5.
Stolworthy
,
M.
,
2022
, “
GB Fuel Type Power Generation Production
,” Elexon, London, UK.
6.
Brilliant
,
H. M.
, and
Tolpadi
,
A. K.
,
2004
, “
Analytical Approach to Steam Turbine Heat Transfer in a Combined Cycle Power Plant
,”
ASME
Paper No. GT2004-53387.10.1115/GT2004-53387
7.
Marinescu
,
G.
,
Mohr
,
W. F.
,
Ehrsam
,
A.
,
Ruffino
,
P.
, and
Sell
,
M.
,
2014
, “
Experimental Investigation Into Thermal Behavior of Steam Turbine Components–Temperature Measurements With Optical Probes and Natural Cooling Analysis
,”
ASME J. Eng. Gas Turbines Power
,
136
(
2
), p. 021602.10.1115/1.4025556
8.
Dominiczak
,
K.
,
Rzadkowski
,
R.
, and
Radulski
,
W.
,
2015
, “
Steam Turbine Stress Control Using NARX Neural Network
,”
Open Eng.
,
5
(
1
), p.
43
.10.1515/eng-2015-0043
9.
Goyal
,
V.
,
Xu
,
M.
,
Kapat
,
J.
, and
Vesely
,
L.
,
2020
, “
Prediction of Gas Turbine Performance Using Machine Learning Methods
,”
ASME
Paper No. GT2020-15232. 10.1115/GT2020-15232
10.
Ibrahem
,
I. M.
,
Akhrif
,
O.
,
Moustapha
,
H.
, and
Staniszewski
,
M.
,
2020
, “
An Ensemble of Recurrent Neural Networks for Real Time Performance Modelling of Three-Spool Aero-Derivative Gas Turbine Engine
,”
ASME J. Eng. Gas Turbines Power
, 143(10), p.
101004
.10.1115/1.4051112
11.
Panov
,
V.
, and
Cruz-Manzo
,
S.
,
2020
, “
Gas Turbine Performance Digital Twin for Real-Time Embedded Systems
,”
ASME
Paper No. GT2020-14664. 10.1115/GT2020-14664
12.
Company, General Electric,
2016
, “
Ensuring Zero Surprises and Downtime With Predictive Analytics
,” GE Digital, San Ramon, CA, accessed Oct. 11, 2023, https://www.ge.com/digital/sites/default/files/download_assets/ensuring-zero-surprises-and-downtime-ge-digital.pdf
13.
Mavriplis
,
D. J.
,
1995
, “
Multigrid Techniques for Unstructured Meshes
,” von Karman Institute (VKI) for Fluid Dynamics, Rhode-SaintGenese, Belgium, NASA Contractor Report No.
NASA-CR-195070
.https://ntrs.nasa.gov/citations/19950021012
14.
Samareh
,
J.
, 2012, “Discrete Data Transfer Technique for Fluid-Structure Interaction,”
AIAA
Paper No. 2007-4309.10.2514/6.2007-4309
15.
Baker
,
M.
,
2022
, “
Turbines for Flexible Power Plant Operation
,” D.Phil. thesis, Oxford Research Archive,
University of Oxford
, Oxford, UK.
16.
Oliver
,
M. A.
, and
Webster
,
R.
,
2015
,
Basic Steps in Geostatistics: The Variogram and Kriging
,
SpringerBriefs in Agriculture
,
Cham, Switzerland
.
17.
PyKrige
,
2021
, “
PyKrige, Kriging Toolkit for Python, Revision f5b39204
,” PyKrige, accessed Oct. 11, 2023, https://geostat-framework.readthedocs.io/projects/pykrige/en/stable/
18.
Schroeder
,
W.
,
Zarge
,
J.
, and
Lorensen
,
W.
,
1992
, “
Decimation of Triangle Meshes
,”
SIGGRAPH Comput. Graph.
,
26
(
2
), pp.
65
70
.10.1145/142920.134010
19.
Blender Foundation
,
2018
, “
Blender
,” Blender Institute, Amsterdam, The Netherlands, accessed Oct. 11, 2023, https://www.blender.org/
20.
van Gelder
,
Verma
, and
Wilhelms
,
1999
, “
Volume Decimation of Irregular Tetrahedral Grids
,”
1999 Proceedings Computer Graphics International
, Canmore, AB, Canada, June 7–11, pp.
222
230
.10.1109/CGI.1999.777958
21.
Stanford University Computer Graphics Laboratory
,
2023
, “
The Stanford 3D Scanning Repository
,” Stanford University, Stanford, CA, accessed Oct. 11, 2023, http://graphics.stanford.edu/data/3Dscanrep/
22.
Bhatia
,
N., and
Vandana
,
2010
, “
Survey of Nearest Neighbor Techniques
,”
IJCSIS
, 8(2), pp. 302–305, arXiv:1007.0085.https://www.researchgate.net/publication/44288385_Survey_of_Nearest_Neighbor_Techniques
23.
Drost
,
B.
, and
Ilic
,
S.
,
2018
, “
Almost Constant-Time 3D Nearest-Neighbor Lookup Using Implicit Octrees
,”
Mach. Vision Appl.
,
29
(
2
), pp.
299
311
.10.1007/s00138-017-0889-4
24.
Schlömer
,
N.
,
2021
, “
Meshio: Tools for Mesh Files
,” accessed Oct. 11, 2023, https://github.com/nschloe/meshio
25.
Murat
,
O.
,
Rosic
,
B.
,
Tanimoto
,
K.
, and
Egami
,
R.
,
2021
, “
Experimental and Numerical Study for Improved Understanding of Mixed-Convection Type of Flows in Turbine Casing Cavities During Shut-Down Regimes
,”
ASME J. Eng. Gas Turbines Power
,
143
(
12
), p. 121009.10.1115/1.4052026
26.
Vince
,
J.
,
2017
,
Mathematics for Computer Graphics
, 5th ed.,
Undergraduate Topics in Computer Science
,
London, UK
.
27.
Dompierre
,
J.
,
Labbé
,
P.
,
Vallet
,
M.-G.
, and
Camarero
,
R.
,
1999
, “
How to Subdivide Pyramids, Prisms, and Hexahedra Into Tetrahedra
,”
Proceedings of the 8th International Meshing Roundtable
, S.
Kenji
, ed.,
South Lake Tahoe
,
CA
, Oct. 10–13, pp.
195
204
.https://www.researchgate.net/publication/221561839_How_to_Subdivide_Pyramids_Prisms_and_Hexahedra_into_Tetrahedra
28.
Virtanen
,
P.
,
Gommers
,
R.
,
Oliphant
,
T. E.
,
Haberland
,
M.
,
Reddy
,
T.
,
Cournapeau
,
D.
,
Burovski
,
E.
, et al.,
2020
, “
SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
,”
Nat. Methods
,
17
(
3
), pp.
261
272
.10.1038/s41592-019-0686-2
You do not currently have access to this content.