Abstract

A robust approach to investigate a tilting pad journal bearing (TPJB) as a whole tolerance stack-up assembly is presented. Normal component variation within actual design tolerances is considered. The vector loop is expanded via Taylor series for sensitive analysis. The bearing shell and tilting pad machined radiuses for each pad are found to be the more influential dimensional characteristics on the assembled clearance and preload. A leading edge relief (LER) was used to avoid unloaded pads fluttering, while maintaining a satisfactory bearing assembled clearance in the loaded pads throughout the resultant preload variation. Pivot flexibility and preload loss due to pad wear in service life were included in the preload variation assessment. Surface response multivariate multiresponse models were built for a 4-pad TPJB under load between pad (LBP) and load on pad (LOP) configurations. Desirability functions rendered the maximum and minimum rotordynamic coefficient and tribological parameter responses across speed. The LOP configuration showed more variation in the direct rotordynamic coefficients, while the LBP configuration indicated more sensitive cross-coupled coefficients with very strong sign change in some cases. Among the tribological performance parameters, the eccentricity and pad maximum pressure were more affected, followed by the minimum film thickness, and weakly by the power loss, and oil film temperature. The dispersion of the tribology parameters under normal manufacturing variation is found of importance. Four, and seven extreme geometrical state cases were identified for the LBP, and LOP bearing configurations, respectively.

References

1.
Zeidan
,
F. Y.
, and
Paquette
,
D. J.
,
1991
, “
Tutorial on the Application of High Speed and High Performance Fluid Film Bearings in Rotating Machinery
,”
Proceedings of 23rd Turbomachinery Symposium
, Texas &M University, College Station, TX, Sept. 13–15, pp.
161
186
.
2.
Nicholas
,
J. C.
,
1994
, “
Tilting Pad Bearing Design
,”
Proceedings of 23rd Turbomachinery Symposium
, Texas &M University, Dallas, TX, Sept. 13–15, pp.
179
194
.https://dyrobes.com/wp-content/uploads/2016/04/Tilting-Pad-Bearing-Design_linked.pdf
3.
Fillon
,
M.
,
Dmochowski
,
W.
, and
Dadouche
,
A.
,
2007
, “
Numerical Study of the Sensitivity of Tilting Pad Journal Bearing Performance Characteristics to Manufacturing Tolerances: Steady State Analysis
,”
Tribol. Trans.
,
50
(
3
), pp.
387
400
.10.1080/10402000701429246
4.
Dmochowski
,
W.
,
Dadouche
,
A.
, and
Fillon
,
M.
,
2008
, “
Numerical Study of the Sensitivity of Tilting-Pad Journal Bearing Performance Characteristics to Manufacturing Tolerances: Dynamic Analysis
,”
Tribol. Trans.
,
51
(
5
), pp.
573
580
.10.1080/10402000801947709
5.
Gomez
,
J. L.
,
Pineda
,
S.
, and
Diaz
,
S. E.
,
2013
, “
On the Effect of Pad Clearance and Preload Manufacturing Tolerances on Tilting Pad Bearings Rotordynamic Coefficients
,”
ASME
Paper No. GT2013-95214.10.1115/GT2013-95214
6.
Quintini
,
J. C. R.
,
Pineda
,
S.
,
Matute
,
J. A.
,
Medina
,
L. U.
,
Gómez
,
J. L.
, and
Diaz
,
S. E.
,
2014
, “
Determining the Effect of Bearing Clearance and Preload Uncertainties on Tilting Pad Bearings Rotordynamic Coefficients
,”
ASME
Paper No. GT2014-26773.10.1115/GT2014-26773
7.
Dang
,
P.
,
Chatterton
,
S.
,
Pennacchi
,
P.
,
Vania
,
A.
, and
Cangioli
,
F.
,
2016
, “
Behavior of Tilting–Pad Journal Bearings With Large Machining Error on Pads
,”
ASME
Paper No. GT2016-56674.10.1115/GT2016-56674
8.
Dang
,
P. V.
,
Chatterton
,
S.
,
Pennacchi
,
P.
, and
Vania
,
A.
,
2018
, “
Numerical Investigation of the Effect of Manufacturing Errors in Pads on the Behaviour of Tilting-Pad Journal Bearings
,”
Proc. Inst. Mech. Eng. Part J
,
232
(
4
), pp.
480
500
.10.1177/1350650117721118
9.
Dang
,
P. V.
,
Chatterton
,
S.
,
Pennacchi
,
P.
, and
Vania
,
A.
,
2016
, “
Effect of the Load Direction on Non-Nominal Five-Pad Tilting Pad Journal Bearings
,”
Tribol. Int.
,
98
, pp.
197
211
.10.1016/j.triboint.2016.02.028
10.
Delgado
,
A.
,
Vanini
,
G.
,
Ertas
,
B.
,
Drexel
,
M.
, and
Naldi
,
L.
,
2011
, “
Identification and Prediction of Force Coefficients in a Five-Pad and Four-Pad Tilting Pad Bearing for Load-on-Pad and Load-Between-Pad Configurations
,”
ASME J. Eng. Gas Turbines Power
,
133
(
9
), p.
092503
.10.1115/1.4002864
11.
Pereira da Silva
,
H. A.
, and
Nicoletti
,
R.
,
2019
, “
Design of Tilting-Pad Journal Bearings Considering Bearing Clearance Uncertainty and Reliability Analysis
,”
ASME J. Tribol.
,
141
(
1
), p.
011703
.10.1115/1.4041021
12.
Fischer
,
B. R.
,
2004
,
Mechanical Tolerance Stackup and Analysis
,
Marcel Dekker
,
New York
.
13.
Chase
,
K. W.
,
Gao
,
J.
,
Magleby
,
S. P.
, and
Sorensen
,
C. D.
,
1996
, “
Including Geometric Feature Variations in Tolerance Analysis of Mechanical Assemblies
,”
IIE Trans.
,
28
(
10
), pp.
795
807
.10.1080/15458830.1996.11770732
14.
Kirk
,
R. G.
, and
Reedy
,
S. W.
,
1988
, “
Evaluation of Pivot Stiffness for Typical Tilting-Pad Journal Bearing Designs
,”
ASME J. Vib., Acoust., Stress, Reliab.
,
110
(
2
), pp.
165
171
.10.1115/1.3269494
15.
Kingsbury Inc
.,
2020
, “
Hydrodynamic LEG Bearings, Thrust and Journal Applications
,” Kingsbury, accessed Mar. 23, 2020, https://www.kingsbury.com/pdf/catalog-leg.pdf
16.
Hargreaves
,
D. J.
, and
Fillon
,
M.
,
2007
, “
Analysis of a Tilting Pad Journal Bearing to Avoid Pad Fluttering
,”
Tribol. Int.
,
40
(
4
), pp.
607
612
.10.1016/j.triboint.2005.11.019
17.
Chase
,
K. W.
, and
Parkinson
,
A. R.
,
1991
, “
A Survey of Research in the Application of Tolerance Analysis to the Design of Mechanical Assemblies
,”
Res. Eng. Des.
,
3
(
1
), pp.
23
37
.10.1007/BF01580066
18.
Murphy
,
B. T.
,
2018
, “
XLHydrodynTM Spreadsheets for Rotordynamic Analysis, Version 5.53
,”
Rotating Machinery Analysis
,
Brevard, NC
.
19.
Adams
,
M. L.
, and
Payandeh
,
S.
,
1983
, “
Self-Excited Vibration of Statically Unloaded Pads in Tilting-Pad Journal Bearings
,”
J. Lubr. Technol.
,
105
(
3
), pp.
77
84
.
20.
Urbiola-Soto
,
L.
,
2018
, “
Multivariate Response Rotordynamic Modeling and Sensitivity Analysis of Tilting Pad Bearings
,”
ASME J. Eng. Gas Turbines Power
,
140
(
7
), p.
072502
.10.1115/1.4038549
21.
Crease
,
A. B.
,
1981
, “
Field Experience and Correction of a Fractional Frequency Vibration Problem on a High Speed Centrifugal Compressor
,”
Proceedings of Tenth Turbomachinery Symposium
, Texas &M University, College Station, TX, pp.
47
54
.
22.
Urbiola-Soto
,
L.
,
Santibañez
,
R.
,
Lopez
,
M.
,
Ramirez
,
A.
, and
Yañez
,
R.
,
2016
, “
Rotordynamic Optimization of Fixed Pad Journal Bearings Using Surface Response Design of Experiments
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
122502
.10.1115/1.4034066
23.
Montgomery
,
D. C.
,
2012
,
Design and Analysis of Experiments
, 8th ed.,
Wiley
,
Hoboken, NJ
.
24.
Rao
,
C. R.
,
1947
, “
Factorial Experiments Derivable From Combinatorial Arrangements of Arrays
,”
J. R. Stat. Soc.
,
9
(
1
), pp.
128
139
.10.2307/2983576
25.
Minitab, Inc.
.,
2017
, “
Minitab Version 18.1
,”
Minitab
,
State College, PA
.
26.
Derringer
,
G.
, and
Suich
,
R.
,
1980
, “
Simultaneous Optimization of Several Response Variables
,”
J. Qual. Technol.
,
12
(
4
), pp.
214
219
.10.1080/00224065.1980.11980968
You do not currently have access to this content.