Abstract

This paper addresses the impact of natural gas composition on both the operability and emissions of lean premixed gas turbine combustion system. This is an issue of growing interest due to the challenge for gas turbine manufacturers in developing fuel-flexible combustors capable of operating with variable fuel gases while producing very low emissions at the same time. Natural gas contains primarily methane (CH4) but also notable quantities of higher order hydrocarbons such as ethane (C2H6) can also be present. A deep understanding of natural gas combustion is important to obtain the highest combustion efficiency with minimal environmental impact. For this purpose, Large Eddy Simulations of an annular combustor sector equipped with a partially premixed burner are carried out for two different natural gas compositions with and without including the effect of flame strain rate and heat loss resulting in a more adequate description of flame shape, thermal field, and extinction phenomena. Promising results, in terms of NOx, compared against available experimental data, are obtained including these effects on the flame brush modeling, enhancing the fuel-dependency under nonadiabatic condition.

References

1.
IEA–International Energy Agency,
2019
, “
World Energy Outlook 2019 - Executive Summary
,” IEA–International Energy Agency, Paris, France.
2.
BP—British Petroleum,
2019
, “
BP's Energy Outlook
,” BP—British Petroleum, London, UK.
3.
Croft Production Systems
, 2021, “
Natural Gas Composition
,” Croft Production Systems, Needville, TX, accessed Feb. 8, 2021, https://www.croftsystems.net/oil-gas-blog/natural-gas-composition
4.
Romano
,
S.
,
Cerutti
,
M.
,
Riccio
,
G.
,
Romano
,
C.
, and
Andreini
,
A.
,
2019
, “
Effect of Natural Gas Composition on Low NOx Burners Operation in Heavy Duty Gas Turbine
,”
ASME J. Eng. Gas Turbines Power
,
141
(
11
), p.
114501
.10.1115/1.4044870
5.
Lieuwen
,
T.
,
McDonell
,
V. G.
,
Petersen
,
E.
, and
Santavicca
,
D.
,
2006
, “
Fuel Flexibility Influences on Premixed Combustor Blowout, Flashback, Autoignition, and Stability
,”
ASME
Paper No. GT2006-90770.10.1115/GT2006-90770
6.
Bougrine
,
S.
,
Richard
,
S.
,
Colin
,
O.
, and
Veynante
,
D.
,
2014
, “
Fuel Composition Effects on Flame Stretch in Turbulent Premixed Combustion: Numerical Analysis of Flame-Vortex Interaction and Formulation of a New Efficiency Function
,”
Flow Turbul. Combust.
,
93
(
2
), pp.
259
281
.10.1007/s10494-014-9546-4
7.
Tay-Wo-Chong
,
L.
,
Zellhuber
,
M.
,
Komarek
,
T.
,
Im
,
H. G.
, and
Polifke
,
W.
,
2016
, “
Combined Influence of Strain and Heat Loss on Turbulent Premixed Flame Stabilization
,”
Flow Turbul. Combust.
,
97
(
1
), pp.
263
294
.10.1007/s10494-015-9679-0
8.
Cerutti
,
M.
,
Giannini
,
N.
,
Ceccherini
,
G.
,
Meloni
,
R.
,
Matoni
,
Romano
,
E. C.
, and
Riccio
,
G.
, "
2018
, “
Dry Low NOx Emissions Operability enhancement of a Heavy-Duty Gas Turbine by Means of Fuel Burner Design Development and Testing
,”
ASME
Paper No. GT2018–76587.10.1115/GT2018–76587
9.
Cerutti
,
M.
,
Modi
,
R.
,
Kalitan
,
D.
, and
Kapil
,
S.
,
2015
, “
Design Improvement Survey for NOx Emissions Reduction of a Heavy-Duty Gas Turbine Partially Premixed Fuel Nozzle Operating With Natural Gas: Experimental Campaign
,”
ASME
Paper No. GT2015–43516.10.1115/GT2015–43516
10.
Innocenti
,
A.
,
Andreini
,
A.
,
Facchini
,
B.
,
Matteo
,
C.
,
Ceccherini
,
G.
, and
Riccio
,
G.
,
2016
, “
Design Improvement Survey for NO x Emissions Reduction of a Heavy-Duty Gas Turbine Partially Premixed Fuel Nozzle Operating With Natural Gas: Numerical Assessment
,”
ASME J. Eng. Gas Turbines Power
,
138
(
1
), p.
011501
.10.1115/1.4031144
11.
Innocenti
,
A.
,
Andreini
,
A.
,
Giusti
,
A.
,
Facchini
,
B.
,
Cerutti
,
M.
,
Ceccherini
,
G.
, and
Riccio
,
G.
,
2014
, “
Numerical Investigations of NOx Emissions of a Partially Premixed Burner for Natural Gas Operations in Industrial Gas Turbine
,”
ASME
Paper No. GT2014-26906.10.1115/GT2014-26906
12.
Bowman
,
C. T.
,
Hanson
,
R. K.
,
Davidson
,
D. F.
,
Gardiner
,
W. C.
, Jr.
,
Lissianski
,
V.
,
Smith
,
G. P.
,
Golden
,
D. M.
,
Frenklach
,
M.
, and
Goldenberg
,
M.
, “GRI-Mech”, GRI-Mech, Online, accessed Feb. 5, 2021, http://combustion.berkeley.edu/gri-mech/
13.
Tay-Wo-Chong
,
L. T.
,
Komarek
,
M. Z.
,
Lenz
,
J.
,
Hirsch
,
C.
, and
Polifke
,
W.
,
2009
, “
Influence of Strain and Heat Loss on Flame Stabilization in a Non-Adiabatic Combustor
,”
Proceedings of the European Combustion Meeting,
Vienna, Austria, Apr. 14–17, pp.
1
6
.https://www.researchgate.net/publication/228521385_Influence_of_strain_and_heat_loss_on_flame_stabilization_in_a_non-adiabatic_combustor
14.
Tay-Wo-Chong
,
L.
,
Scarpato
,
A.
, and
Polifke
,
W.
,
2017
, “
LES Combustion Model With Stretch and Heat Loss Effects for Prediction of Premix Flame Characteristics and Dynamics
,”
ASME
Paper No. GT2017-63357.10.1115/GT2017-63357
15.
Nassini
,
P. C.
,
Pampaloni
,
D.
, and
Andreini
,
A.
,
2018
, “
Impact of Stretch and Heat Loss on Flame Stabilization in a Lean Premixed Flame Approaching Blow-Off
,”
Energy Procedia
,
148
, pp.
250
257
.10.1016/j.egypro.2018.08.075
16.
Pampaloni
,
D.
,
Andreini
,
A.
,
Facchini
,
B.
, and
Paschereit
,
C. O.
,
2018
, “
LES Modelling of the Flame Describing Function of a Lean Premixed Swirl Stabilized Flame
,”
J. Propul. Power
, 35(7), p.
4608
.10.2514/6.2018-4608
17.
Nassini
,
P. C.
,
Pampaloni
,
D.
,
Andreini
,
A.
, and
Meloni
,
R.
,
2019
, “
Large Eddy Simulation of Lean Blow-Off in a Premixed Swirl Stabilized Flame
,”
ASME
Paper No. GT2019-90856.10.1115/GT2019-90856
18.
Nassini
,
P. C.
,
Pampaloni
,
D.
, and
Andreini
,
A.
,
2019
, “
Inclusion of Flame Stretch and Heat Loss in LES Combustion Model
,”
Am Inst. Phys. Conf. Proc.
, 2191(1), p. 020119.10.1063/1.5138852
19.
Flohr
,
P.
, and
Pitsch
,
H.
,
2000
, “
A Turbulent Flame Speed Closure Model for LES of Industrial Burner Flows
,”
Cent. Turbul. Res. Proc. Summer Progr.
, pp.
169
179
. https://web.stanford.edu/group/ctr/ctrsp00/flohr.pdf
20.
Poinsot
,
T.
, and
Veynante
,
D.
,
2005
, “
Theoretical and Numerical Combustion
.”https://www.researchgate.net/publication/248068931_Theoretical_and_Numerical_Combustion
21.
Bradley
,
D.
,
Gaskell
,
P. H.
,
Sedaghat
,
A.
, and
Gu
,
X. J.
,
2003
, “
Generation of PDFS for Flame Curvature and for Flame Stretch Rate in Premixed Turbulent Combustion
,”
Combust. Flame
,
135
(
4
), pp.
503
523
.10.1016/S0010-2180(03)00181-0
22.
Klarmann
,
N.
,
Sattelmayer
,
T.
,
Geng
,
W.
, and
Magni
,
F.
,
2016
, “
Flamelet Generated Manifolds for Partially Premixed, Highly Stretched and Non-Adiabatic Combustion in Gas Turbines
,”
AIAA
Paper No. 2016-2120.10.2514/6.2016-2120
23.
Meneveau
,
C.
, and
Poinsot
,
T.
,
1991
, “
Stretching and Quenching of Flamelets in Premixed Turbulent Combustion
,”
Combust. Flame
,
86
(
4
), pp.
311
332
.10.1016/0010-2180(91)90126-V
24.
Pope
,
S. B.
,
2004
, “
Ten Questions Concerning the Large Eddy Simulations of Turbulent Flows
,”
New J. Phys.
,
6
, pp.
35
35
.10.1088/1367-2630/6/1/035
25.
Pope
,
S. B.
, “
2011
,
Turbulent Flows
,
Cambridge University Press
, Cambridge, UK.
26.
Goodwin
,
D. G.
,
Speth
,
R. L.
,
Moat
,
H. K.
, and
Weber
,
B. W.
,
2018
, “
Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes
.”https://zenodo.org/record/1174508#.YBrl2TEzbZ4
You do not currently have access to this content.