Abstract

In this study, a frequency-domain approach based on the harmonic balance method coupled to a predictor-corrector continuation algorithm is implemented for the qualitative analysis of blade-tip/casing contacts in aircraft engines. Unilateral contact and dry friction are taken into account through a regularized penalty law. To enhance the robustness of the methodology, particular attention is paid to the mitigation of the Gibbs phenomenon. To this end, the employed alternating frequency/time scheme features a Lanczos σ-approximation so that spurious oscillations of the computed nonlinear contact forces become negligible. This approach is applied in combination with a model reduction technique on an industrial compressor blade: NASA rotor 37. In order to assess the influence of both the contact law regularization and the Lanczos σ-approximation, obtained results are thoroughly compared to an existing time integration-based numerical strategy relying on a Lagrange multiplier-based approach for contact treatment and that was previously confronted to experimental results. Presented results underline the very good agreement between the proposed methodology and the reference time integration numerical strategy. The proposed developments thus complement existing results on blade-tip/casing contact adding a much needed qualitative understanding of the interaction and an accurate assessment of the contact stiffening phenomenon.

References

1.
Padova
,
C.
,
Barton
,
J.
,
Dunn
,
M. G.
, and
Manwaring
,
S.
,
2007
, “
Experimental Results From Controlled Blade Tip/Shroud Rubs at Engine Speed
,”
ASME J. Turbomach
,
129
(
4
), pp.
713
723
.10.1115/1.2720869
2.
Millecamps
,
A.
,
Brunel
,
J.-F.
,
Dufrénoy
,
P.
,
Garcin
,
F.
, and
Nucci
,
M.
,
2009
, “
Influence of Thermal Effects During Blade-Casing Contact Experiments
,”
ASME
Paper No. DETC2009-86842.10.1115/DETC2009-86842
3.
Nyssen
,
F.
,
Tableau
,
N.
,
Lavazec
,
D.
, and
Batailly
,
A.
,
2020
, “
Experimental and Numerical Characterization of a Ceramic Matrix Composite Shroud Segment Under Impact Loading
,”
J. Sound Vib.
,
467
, p.
115040
.10.1016/j.jsv.2019.115040
4.
Batailly
,
A.
,
Legrand
,
M.
,
Millecamps
,
A.
, and
Garcin
,
F.
,
2012
, “
Numerical-Experimental Comparison in the Simulation of Rotor/Stator Interaction Through Blade-Tip/Abradable Coating Contact
,”
ASME J. Eng. Gas Turbines Power
,
134
(
8
), p.
082504
.10.1115/1.4006446
5.
Almeida
,
P.
,
Gibert
,
C.
,
Thouverez
,
F.
,
Leblanc
,
X.
, and
Ousty
,
J.-P.
,
2016
, “
Numerical Analysis of Bladed Disk-Casing Contact With Friction and Wear
,”
ASME J. Eng. Gas Turbines Power
,
138
(
12
), p.
122802
.10.1115/1.4033065
6.
Thorin
,
A.
,
Guérin
,
N.
,
Legrand
,
M.
,
Thouverez
,
F.
, and
Almeida
,
P.
,
2018
, “
Nonsmooth Thermoelastic Simulations of Blade-Casing Contact Interactions
,”
ASME J. Eng. Gas Turbines Power
,
141
(
2
), p.
022502
.10.1115/1.4040857
7.
Meingast
,
M. B.
,
Legrand
,
M.
, and
Pierre
,
C.
,
2014
, “
A Linear Complementarity Problem Formulation for Periodic Solutions to Unilateral Contact Problems
,”
Int. J. Non-Linear Mech.
,
66
, pp.
18
27
.10.1016/j.ijnonlinmec.2014.01.007
8.
Von Groll
,
G.
, and
Ewins
,
D. J.
,
2001
, “
The Harmonic Balance Method With Arc-Length Continuation in Rotor/Stator Contact Problems
,”
J. Sound Vib.
,
241
(
2
), pp.
223
233
.10.1006/jsvi.2000.3298
9.
Xie
,
L.
,
Baguet
,
S.
,
Prabel
,
B.
, and
Dufour
,
R.
,
2017
, “
Bifurcation Tracking by Harmonic Balance Method for Performance Tuning of Nonlinear Dynamical Systems
,”
Mech. Syst. Signal Process
,
88
, pp.
445
461
.10.1016/j.ymssp.2016.09.037
10.
Nacivet
,
S.
,
Pierre
,
C.
,
Thouverez
,
F.
, and
Jezequel
,
L.
,
2003
, “
A Dynamic Lagrangian Frequency–Time Method for the Vibration of Dry-Friction-Damped Systems
,”
J. Sound Vib.
,
265
(
1
), pp.
201
219
.10.1016/S0022-460X(02)01447-5
11.
Krack
,
M.
,
Panning-von Scheidt
,
L.
, and
Wallaschek
,
J.
,
2016
, “
On the Interaction of Multiple Traveling Wave Modes in the Flutter Vibrations of Friction-Damped Tuned Bladed Disks
,”
ASME J. Eng. Gas Turbines Power
,
139
(
4
), p.
042501
.10.1115/1.4034650
12.
Krack
,
M.
,
Salles
,
L.
, and
Thouverez
,
F.
,
2017
, “
Vibration Prediction of Bladed Disks Coupled by Friction Joints
,”
Arch. Comput. Methods Eng.
,
24
(
3
), pp.
589
636
.10.1007/s11831-016-9183-2
13.
Petrov
,
E. P.
,
2012
, “
Multiharmonic Analysis of Nonlinear Whole Engine Dynamics With Bladed Disc-Casing Rubbing Contacts
,”
ASME
Paper No. GT2012-68474.10.1115/GT2012-68474
14.
Jerri
,
A. J.
,
1998
,
The Gibbs Phenomenon in Fourier Analysis, Splines and Wavelet Approximations
, Vol.
446
,
Springer
,
Boston, MA
.
15.
Krack
,
M.
, and
Gross
,
J.
,
2019
,
Harmonic Balance for Nonlinear Vibration Problems
,
Springer
,
Cham, Switzerland
.
16.
Woiwode
,
L.
,
Narayanaa Balaji
,
N.
,
Kappauf
,
J.
,
Tubita
,
F.
,
Guillot
,
L.
,
Vergez
,
C.
,
Cochelin
,
B.
,
Grolet
,
A.
, and
Krack
,
M.
,
2020
, “
Comparison of Two Algorithms for Harmonic Balance and Path Continuation
,”
Mech. Syst. Signal Process
,
136
, p.
106503
.10.1016/j.ymssp.2019.106503
17.
Keller
,
H. B.
,
1983
, “
The Bordering Algorithm and Path Following Near Singular Points of Higher Nullity
,”
SIAM J. Sci. Stat. Comput.
,
4
(
4
), pp.
573
582
.10.1137/0904039
18.
Cameron
,
T. M.
, and
Griffin
,
J. H.
,
1989
, “
An Alternating Frequency/Time Domain Method for Calculating the Steady-State Response of Nonlinear Dynamic Systems
,”
ASME J. Appl. Mech.
,
56
(
1
), pp.
149
154
.10.1115/1.3176036
19.
Narayanan
,
S.
, and
Sekar
,
P.
,
1998
, “
A Frequency Domain Based Numeric–Analytical Method for Non-Linear Dynamical Systems
,”
J. Sound Vib.
,
211
(
3
), pp.
409
424
.10.1006/jsvi.1997.1319
20.
Cardona
,
A.
,
Lerusse
,
A.
, and
Géradin
,
M.
,
1998
, “
Fast Fourier Nonlinear Vibration Analysis
,”
Comput. Mech.
,
22
(
2
), pp.
128
142
.10.1007/s004660050347
21.
Sarrouy
,
E.
, and
Sinou
,
J.-J.
,
2011
, “
Non-Linear Periodic and Quasi-Periodic Vibrations in Mechanical Systems - On the Use of the Harmonic Balance Methods
,”
Advances in Vibration Analysis Research
, Vol.
21
,
F.
Ebrahimi
, ed.,
IntechOpen
,
Rijeka
, pp.
419
434
.
22.
Djeddi
,
R.
, and
Ekici
,
K.
,
2016
, “
Resolution of Gibbs Phenomenon Using a Modified Pseudo-Spectral Operator in Harmonic Balance CFD Solvers
,”
Int. J. Comput. Fluid Dyn.
,
30
(
7–10
), pp.
495
515
.10.1080/10618562.2016.1242726
23.
Reid
,
L.
, and
Moore
,
R. D.
, “
Design and Overall Performance of Four Highly Loaded, High Speed Inlet Stages for an Advanced High-Pressure-Ratio Core Compressor
,”
NASA Lewis Research Center Cleveland
,
OH
, Report No.
NASA-TP-1337
.https://ntrs.nasa.gov/citations/19780025165
24.
Piollet
,
E.
,
Nyssen
,
F.
, and
Batailly
,
A.
,
2019
, “
Blade/Casing Rubbing Interactions in Aircraft Engines: Numerical Benchmark and Design Guidelines Based on NASA Rotor 37
,”
J. Sound Vib.
,
460
, p.
114878
.10.1016/j.jsv.2019.114878
25.
Craig
,
R. R.
, Jr.
, and
Bampton
,
M. C. C.
,
1968
, “
Coupling of Substructures for Dynamic Analyses
,”
AIAA J.
,
6
(
7
), pp.
1313
1319
.10.2514/3.4741
26.
Batailly
,
A.
,
Legrand
,
M.
,
Cartraud
,
P.
, and
Pierre
,
C.
,
2010
, “
Assessment of Reduced Models for the Detection of Modal Interaction Through Rotor Stator Contacts
,”
J. Sound Vib.
,
329
(
26
), pp.
5546
5562
.10.1016/j.jsv.2010.07.018
27.
Sternchüss
,
A.
, and
Balmès
,
E.
,
2006
, “
On the Reduction of Quasi-Cyclic Disk Models With Variable Rotation Speeds
,”
Proceedings of the International Conference on Advanced Acoustics and Vibration Engineering
, Leuven, Belgium, pp.
3925
3939
.Engineering,
28.
Huebler
,
D.
, “
Rotor 37 and Stator 37 Assembly. Records of the NASA, 1903–2006. Photographs Relating to Agency Activities, Facilities and Personnel, 1973–2013
”.https://catalog.archives.gov/id/17468389
You do not currently have access to this content.