Abstract

The minimization of auto-ignition risk is critical to the design of premixers of high power aeroderivative gas turbines as an increased use of highly reactive future fuels (for example, hydrogen or higher hydrocarbons) is anticipated. Safety factors based on ignition delays of homogeneous mixtures are generally used to guide the choice of a residence time for a given premixer. However, auto-ignition chemistry under aeroderivative conditions is fast (0.5–2 ms) and can be initiated within typical premixer residence times. The analysis of what takes place in this short period necessarily involves the study of low-temperature auto-ignition precursor chemistry, but precursors can change with fuel and local reactivity. Chemical explosive modes (CEMs) are a natural alternative to study this as they can provide a measure for auto-ignition risk by considering the whole thermochemical state in the framework of an eigenvalue problem. When transport effects are included by coupling the evolution of the chemical explosive modes to turbulence, it is possible to obtain a measure of spatial auto-ignition risk where both chemical (e.g., ignition delay) and aerodynamic (e.g., local residence time) influences are unified. In this article, we describe a method that couples large eddy simulation (LES) to newly developed, reduced auto-ignition chemical kinetics to study auto-ignition precursors in an example premixer representative of real life geometric complexity. A blend of pure methane and di-methyl ether (DME), a common fuel used for experimental auto-ignition studies, was transported using the reduced mechanism (38 species/238 reactions) under engine conditions at increasing levels of DME concentrations until exothermic auto-ignition kernels were formed. The resolution of species profiles was ensured by using a thickened flame model where dynamic thickening was carried out with a flame sensor modified to work with multistage heat release. This paper is outlined as follows: First, a reduced mechanism is constructed and validated for modeling methane as well as DME auto-ignition. Second, sensitivity analysis is used to show the need for chemical explosive modes. Third, the thickened flame model modifications are described and then applied to an example premixer at 25 bar/890 K preheat. The chemical explosive mode analysis closely follows the large thermochemical changes in the premixer as a function of DME concentrations and identifies where the premixer is sensitive and flame anchoring is likely to occur.

References

1.
Mastorakos
,
E.
,
Baritaud
,
T.
, and
Poinsot
,
T.
,
1997
, “
Numerical Simulations of Autoignition in Turbulent Mixing Flows
,”
Combust. Flame
,
109
(
1–2
), pp.
198
223
.10.1016/S0010-2180(96)00149-6
2.
Markides
,
C.
, and
Mastorakos
,
E.
,
2005
, “
An Experimental Study of Hydrogen Autoignition in a Turbulent Co-Flow of Heated Air
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
883
891
.10.1016/j.proci.2004.08.024
3.
Mastorakos
,
E.
,
2009
, “
Ignition of Turbulent Non-Premixed Flames
,”
Prog. Energy Combust. Sci.
,
35
(
1
), pp.
57
97
.10.1016/j.pecs.2008.07.002
4.
Goy
,
C.
,
Moran
,
A.
, and
Thomas
,
G.
, “
Autoignition Characteristics of Gaseous Fuels at Representative Gas Turbine Conditions
,”
ASME
Paper No. 2001-GT-0051. 10.1115/2001-GT-0051
5.
Markides
,
C. N.
, and
Mastorakos
,
E.
,
2008
, “
Flame Propagation Following the Autoignition of Axisymmetric Hydrogen, Acetylene, and Normal-Heptane Plumes in Turbulent Coflows of Hot Air
,”
ASME J. Eng. Gas Turbines Power
,
130
(
1
), p.
011502
.10.1115/1.2771245
6.
Markides
,
C. N.
, and
Mastorakos
,
E.
,
2011
, “
Experimental Investigation of the Effects of Turbulence and Mixing on Autoignition Chemistry
,”
Flow, Turbul. Combust.
,
86
(
3–4
), pp.
585
608
.10.1007/s10494-010-9268-1
7.
Schmalhofer
,
C. A.
,
Griebel
,
P.
, and
Aigner
,
M.
,
2018
, “
The Influence of Carrier Air Preheating on Autoignition of Inline-Injected Hydrogen–Nitrogen Mixtures in Vitiated Air of High Temperature
,”
ASME J. Eng. Gas Turbines Power
,
140
(
3
), p.
031502
.10.1115/1.4037918
8.
Lu
,
T.
, and
Law
,
C. K.
,
2009
, “
Toward Accommodating Realistic Fuel Chemistry in Large-Scale Computations
,”
Prog. Energy Combust. Sci.
,
35
(
2
), pp.
192
215
.10.1016/j.pecs.2008.10.002
9.
Felden
,
A.
,
Pepiot
,
P.
,
Esclapez
,
L.
,
Riber
,
E.
, and
Cuenot
,
B.
,
2019
, “
Including Analytically Reduced Chemistry (ARC) in CFD Applications
,”
Acta Astronaut.
,
158
, pp.
444
459
.10.1016/j.actaastro.2019.03.035
10.
Jones
,
W.
, and
Navarro-Martinez
,
S.
,
2009
, “
Numerical Study of n-Heptane Auto-Ignition Using LES-PDF Methods
,”
Flow, Turbul. Combust.
,
83
(
3
), pp.
407
423
.10.1007/s10494-009-9228-9
11.
Stanković
,
I.
,
Triantafyllidis
,
A.
,
Mastorakos
,
E.
,
Lacor
,
C.
, and
Merci
,
B.
,
2011
, “
Simulation of Hydrogen Auto-Ignition in a Turbulent Co-Flow of Heated Air With LES and CMC Approach
,”
Flow, Turbul. Combust.
,
86
(
3–4
), pp.
689
710
.10.1007/s10494-010-9277-0
12.
Picciani
,
M.
,
Richardson
,
E.
, and
Navarro-Martinez
,
S.
,
2018
, “
Resolution Requirements in Stochastic Field Simulation of Turbulent Premixed Flames
,”
Flow, Turbul. Combust.
,
101
(
4
), pp.
1103
1118
.10.1007/s10494-018-9953-z
13.
Schulz
,
O.
,
Jaravel
,
T.
,
Poinsot
,
T.
,
Cuenot
,
B.
, and
Noiray
,
N.
,
2017
, “
A Criterion to Distinguish Autoignition and Propagation Applied to a Lifted Methane–Air Jet Flame
,”
Proc. Combust. Inst.
,
36
(
2
), pp.
1637
1644
.10.1016/j.proci.2016.08.022
14.
Burke
,
U.
,
Somers
,
K. P.
,
O'Toole
,
P.
,
Zinner
,
C. M.
,
Marquet
,
N.
,
Bourque
,
G.
,
Petersen
,
E. L.
,
Metcalfe
,
W. K.
,
Serinyel
,
Z.
, and
Curran
,
H. J.
,
2015
, “
An Ignition Delay and Kinetic Modeling Study of Methane, Dimethyl Ether, and Their Mixtures at High Pressures
,”
Combust. Flame
,
162
(
2
), pp.
315
330
.10.1016/j.combustflame.2014.08.014
15.
Lu
,
T.
, and
Law
,
C. K.
,
2005
, “
A Directed Relation Graph Method for Mechanism Reduction
,”
Proc. Combust. Inst.
,
30
(
1
), pp.
1333
1341
.10.1016/j.proci.2004.08.145
16.
Lu
,
T.
, and
Law
,
C. K.
,
2008
, “
Strategies for Mechanism Reduction for Large Hydrocarbons: N-Heptane
,”
Combust. Flame
,
154
(
1–2
), pp.
153
163
.10.1016/j.combustflame.2007.11.013
17.
Kazakov
,
A.
,
Chaos
,
M.
,
Zhao
,
Z.
, and
Dryer
,
F. L.
,
2006
, “
Computational Singular Perturbation Analysis of Two-Stage Ignition of Large Hydrocarbons
,”
J. Phys. Chem. A
,
110
(
21
), pp.
7003
7009
.10.1021/jp057224u
18.
Versailles
,
P.
,
Durocher
,
A.
,
Bourque
,
G.
, and
Bergthorson
,
J. M.
,
2019
, “
Measurements of the Reactivity of Premixed, Stagnation, Methane-Air Flames at Gas Turbine Relevant Pressures
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011027
.10.1115/1.4041125
19.
Ji
,
W.
,
Ren
,
Z.
, and
Law
,
C. K.
,
2019
, “
Evolution of Sensitivity Directions During Autoignition
,”
Proc. Combust. Inst.
,
37
(
1
), pp.
807
815
.10.1016/j.proci.2018.07.005
20.
Gordon
,
R. L.
,
Masri
,
A. R.
,
Pope
,
S. B.
, and
Goldin
,
G. M.
,
2007
, “
A Numerical Study of Auto-Ignition in Turbulent Lifted Flames Issuing Into a Vitiated Co-Flow
,”
Combust. Theory Modell.
,
11
(
3
), pp.
351
376
.10.1080/13647830600903472
21.
Gkagkas
,
K.
, and
Lindstedt
,
R.
,
2007
, “
Transported PDF Modelling With Detailed Chemistry of Pre-and Auto-Ignition in CH4/Air Mixtures
,”
Proc. Combust. Inst.
,
31
(
1
), pp.
1559
1566
.10.1016/j.proci.2006.08.078
22.
Lam
,
S.
, and
Goussis
,
D.
,
1989
, “
Understanding Complex Chemical Kinetics With Computational Singular Perturbation
,”
Symp. (Int.) Combust.
,
22
(
1
), pp.
931
941
.10.1016/S0082-0784(89)80102-X
23.
Lu
,
T.
,
Ju
,
Y.
, and
Law
,
C. K.
,
2001
, “
Complex CSP for Chemistry Reduction and Analysis
,”
Combust. Flame
,
126
(
1–2
), pp.
1445
1455
.10.1016/S0010-2180(01)00252-8
24.
Rehm
,
M.
,
Seifert
,
P.
, and
Meyer
,
B.
,
2009
, “
Theoretical and Numerical Investigation on the EDC-Model for Turbulence–Chemistry Interaction at Gasification Conditions
,”
Comput. Chem. Eng.
,
33
(
2
), pp.
402
407
.10.1016/j.compchemeng.2008.11.006
25.
Lu
,
T.
,
Yoo
,
C.
,
Chen
,
J.
, and
Law
,
C. K.
,
2010
, “
Three-Dimensional Direct Numerical Simulation of a Turbulent Lifted Hydrogen Jet Flame in Heated Coflow: A Chemical Explosive Mode Analysis
,”
J. Fluid Mech.
,
652
, pp.
45
64
.10.1017/S002211201000039X
26.
Xu
,
C.
,
Park
,
J.-W.
,
Yoo
,
C. S.
,
Chen
,
J. H.
, and
Lu
,
T.
,
2019
, “
Identification of Premixed Flame Propagation Modes Using Chemical Explosive Mode Analysis
,”
Proc. Combust. Inst.
,
37
(
2
), pp.
2407
2415
.10.1016/j.proci.2018.07.069
27.
Schulz
,
O.
,
Piccoli
,
E.
,
Felden
,
A.
,
Staffelbach
,
G.
, and
Noiray
,
N.
,
2019
, “
Autoignition-Cascade in the Windward Mixing Layer of a Premixed Jet in Hot Vitiated Crossflow
,”
Combust. Flame
,
201
, pp.
215
233
.10.1016/j.combustflame.2018.11.012
28.
Scarinci
,
T.
,
Freeman
,
C.
, and
Day
,
I.
, “
Passive Control of Combustion Instability in a Low Emissions Aeroderivative Gas Turbine
,”
ASME
Paper No. GT2004-53767. 10.1115/GT2004-53767
29.
Kim
,
W.-W.
, and
Menon
,
S.
,
1997
, “
Application of the Localized Dynamic Subgrid-Scale Model to Turbulent Wall-Bounded Flows
,”
AIAA
Paper No. 97-0210.10.2514/6.1997-0210
30.
Niemeyer
,
K. E.
,
Curtis
,
N. J.
, and
Sung
,
C.-J.
,
2017
, “
PyJac: Analytical Jacobian Generator for Chemical Kinetics
,”
Comput. Phys. Commun.
,
215
, pp.
188
203
.10.1016/j.cpc.2017.02.004
31.
Strakey
,
P. A.
, and
Eggenspieler
,
G.
,
2010
, “
Development and Validation of a Thickened Flame Modeling Approach for Large Eddy Simulation of Premixed Combustion
,”
ASME J. Eng. Gas Turbines Power
,
132
(
7
), p.
071501
.10.1115/1.4000119
32.
Légier
,
J.
,
Poinsot
,
T.
,
Varoquié
,
B.
,
Lacas
,
F.
, and
Veynante
,
D.
,
2002
, “
Large Eddy Simulation of a Non-Premixed Turbulent Burner Using a Dynamically Thickened Flame Model
,”
IUTAM Symposium on Turbulent Mixing and Combustion
, Kingston, ON, Canada, June 3–6, pp.
315
326
.10.1007/978-94-017-1998-8_27
33.
O'Rourke
,
P. J.
, and
Bracco
,
F. V.
,
1979
, “
Two Scaling Transformations for the Numerical Computation of Multidimensional Unsteady Laminar Flames
,”
J. Comput. Phys.
,
33
(
2
), pp.
185
203
.10.1016/0021-9991(79)90015-9
34.
Schmalhofer
,
C. A.
,
Griebel
,
P.
, and
Aigner
,
M.
,
2018
, “
Influence of Autoignition Kernel Development on the Flame Stabilisation of Hydrogen-Nitrogen Mixtures in Vitiated Air of High Temperature
,”
ASME
Paper No. GT2018-7548.10.1115/GT2018-7548
35.
Lu
,
T.
, and
Law
,
C. K.
,
2006
, “
Systematic Approach to Obtain Analytic Solutions of Quasi Steady State Species in Reduced Mechanisms
,”
J. Phys. Chem. A
,
110
(
49
), pp.
13202
13208
.10.1021/jp064482y
You do not currently have access to this content.