Abstract

A disk-oriented engine was designed to reduce the overall length of a gas turbine engine, combining a single-stage centrifugal compressor and radial in-flow turbine (RIT) in a back-to-back configuration. The focus of this research was to understand how this unique flow path impacted the combustion process. Computational analysis was accomplished to determine the feasibility of reducing the axial length of a gas turbine engine utilizing circumferential combustion. The desire was to maintain circumferential swirl from the compressor through a U-bend combustion path. The U-bend reverses the outboard flow from the compressor into an integrated turbine guide vane in preparation for power extraction by the RIT. The computational targets for this design were a turbine inlet temperature of 1300 K, operating with a 3% total pressure drop across the combustor, and a turbine inlet pattern factor (PF) of 0.24 to produce a cycle capable of creating 668 N of thrust. By wrapping the combustion chamber about the circumference of the turbomachinery, the axial length of the entire engine was reduced. Reallocating the combustor volume from the axial to radial orientation reduced the overall length of the system up to 40%, improving the mobility and modularity of gas turbine power in specific applications. This reduction in axial length could be applied to electric power generation for both ground power and airborne distributive electric propulsion. Computational results were further compared to experimental velocity measurements on custom fuel–air swirl injectors at mass flow conditions representative of 668 N of thrust, providing qualitative and quantitative insight into the stability of the flame anchoring system. From this design, a full-scale physical model of the disk-oriented engine was designed for combustion analysis.

References

1.
Mattingly
,
J. D.
, and
Boyer
,
K. M.
,
2016
,
Elements of Propulsion: Gas Turbines and Rockets
(AIAA Education Series), 2nd ed., AIAA, Reston, VA.
2.
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2013
, “
Analysis of Flow Migration in an Ultra-Compact Combustor
,”
ASME J. Eng. Gas Turbines Power
,
135
(
5
), p.
051502
.10.1115/1.4007866
3.
Ingenieurbuero CAT, M Zipperer GmbH
, 2019, “
Jet Cat: RC-Hobby Engines
,” Ingenieurbuero CAT, M Zipperer GmbH, Ballrechten-Dottingen, Germany, accessed Nov. 11, 2019, https://www.jetcat.de/en/products/
4.
Yonezawa
,
Y.
,
Toh
,
H.
,
Goto
,
S.
, and
Obata
,
M.
,
1990
, “
Development of the Jet-Swirl High Loading Combustor
,”
AIAA
Paper No. 90-2451.10.2514/6.1990-2451
5.
Cottle
,
A. E.
,
Gilbert
,
N. A.
, and
Polanka
,
M. D.
,
2016
, “
Mechanisms for Enhanced Flow Migration From an Annular, High-g Ultra Compact Combustor
,”
AIAA
Paper No. 2016-1392.10.2514/6.2016-1392
6.
DeMarco
,
K. J.
,
Bohan
,
B. T.
,
Hornedo
,
E. A.
,
Polanka
,
M. D.
, and
Goss
,
L. P.
,
2018
, “
Design Strategy for Fuel Introduction to a Circumferential Combustion Cavity
,”
AIAA
Paper No. AIAA 2018-1876.10.2514/6.2018-1876
7.
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2019
, “
Experimental Analysis of an Ultra Compact Combustor Powered Turbine Engine
,”
ASME
Paper No. GT2019-90607.10.1115/GT2019-90607
8.
Briones
,
A. M.
,
Sekar
,
B.
, and
Erdmann
,
T.
,
2015
, “
Effect of Centrifugal Force on Turbulent Premixed Flames
,”
ASME J. Eng. Gas Turbines Power
,
137
(
1
), p.
011501
.10.1115/1.4028057
9.
DeMarco
,
K. J.
,
Bohan
,
B. T.
,
Polanka
,
M. D.
, and
Goss
,
L. P.
,
2018
, “
Performance Characterization of a Circumferential Combustion Cavity
,”
AIAA
Paper No. 2018-4922.10.2514/6.2018-4922
10.
Cottle
,
A. E.
,
Polanka
,
M. D.
,
Goss
,
L. P.
, and
Goss
,
C. Z.
,
2018
, “
Investigation of Air Injection and Cavity Size Within a Circumferential Combustor to Increase G-Load and Residence Time
,”
ASME J. Eng. Gas Turbines Power
,
140
(
1
), p.
011501
.10.1115/1.4037578
11.
Norgren
,
C. T.
,
Mularz
,
E. J.
, and
Riddlebaugh
,
S. M.
,
1978
, “
Reverse-Flow Combustor for Small Gas Turbines With Pressure-Atomizing Fuel Injectors
,” NASA, Washington, DC, Report No.
TR 78-22(PL)
.https://core.ac.uk/download/pdf/42873603.pdf
12.
Crocker
,
D. S.
, and
Smith
,
C. E.
,
1995
, “
Numerical Investigation of Enhanced Dilution Zone Mixing in a Reverse Flow Gas Turbine Combustor
,”
ASME J. Eng. Gas Turbines Power
,
117
(
2
), pp.
272
281
.10.1115/1.2814091
13.
Bobba
,
M. K.
,
Gopalakrishnan
,
P.
,
Periagaram
,
K.
, and
Seitzman
,
J. M.
,
2008
, “
Flame Structure and Stabilization Mechanisms in a Stagnation-Point Reverse-Flow Combustor
,”
ASME J. Eng. Gas Turbines Power
,
130
(
3
), p.
031505
.10.1115/1.2836614
14.
Mattingly
,
J. D.
,
Heiser
,
W. H.
, and
Pratt
,
D. T.
,
2002
,
Aircraft Engine Design
(AIAA Education Series), 2nd ed., AIAA, Reston, VA.
15.
Garrett Motion, Inc.,
2019, “
Garrett Motion: GTX5544R GEN II Turbocharger
,” Garrett Motion, Inc., Rolle, Switzerland, accessed Nov. 6, 2019, https://www.garrettmotion.com/racing-and-performance/performance-catalog/turbo/gtx5544r-gen-ii/
16.
Cottle
,
A. E.
, and
Polanka
,
M. D.
,
2016
, “
Numerical and Experimental Results From a Common-Source High-G Ultra-Compact Combustor
,”
ASME
Paper No. GT 2016-5621510.1115/GT 2016-56215.
17.
Bohan
,
B. T.
, and
Polanka
,
M. D.
,
2019
, “
A New Spin on Small-Scale Combustor Geometry
,”
ASME J. Eng. Gas Turbines Power
,
141
(
1
), p.
011504
.10.1115/1.4040658
18.
Gas Research Institute
,
2000
, “
GRI-Mech Project, 3.0
,”
Gas Research Institute
,
Berkeley, CA
.
19.
Cottle
,
A. E.
,
Gilbert
,
N. A.
,
Polanka
,
M. D.
,
Goss
,
L. P.
, and
Goss
,
C. Z.
,
2016
, “
Optical Diagnostics in a High-g Combustion Cavity
,”
AIAA
Paper No. 2016-4560.10.2514/6.2016-4560
20.
Huang
,
Y.
, and
Yang
,
V.
,
2009
, “
Dynamics and Stability of Lean-Premixed Swirl-Stabilized Combustion
,”
Prog. Energy Combust. Sci.
,
35
(
4
), pp.
293
364
.10.1016/j.pecs.2009.01.002
21.
Yilmaz
,
I.
,
2013
, “
Effect of Swirl Number on Combustion Characteristics in a Natural Gas Diffusion Flame
,”
ASME J. Energy Resour. Technol.
,
135
(
4
), p.
042204
.10.1115/1.4024222
22.
ASM Aerospace Specification Metals, Inc.
, 2020, “
AISI Type 321 Stainless Steel, Annealed Sheet
,”
ASM Aerospace Specification Metals, Inc
.,
Pompano Beach, FL
, accessed Mar. 16, 2020, http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MQ321A
23.
Damele
,
C. J.
,
Polanka
,
M. D.
,
Wilson
,
J. D.
, and
Rutledge
,
J. L.
,
2014
, “
Characterizing Thermal Exit Conditions for an Ultra Compact Combustor
,”
AIAA
Paper No. 2014-0456.10.2514/6.2014-0456
24.
Mattingly
,
J. D.
, and
Boyer
,
K. M.
,
2006
,
Elements of Propulsion: Gas Turbines and Rockets
(AIAA Education Series), 1st ed., AIAA, Reston, VA.
25.
Hinds
,
W. C.
,
1999
,
Aerosol Technology: Properties, Behaviors, and Measurements of Airborne Particles
,
Wiley
,
New York
.
You do not currently have access to this content.