This paper investigates novel IGCC plants that employ hydrogen separation membranes in order to capture carbon dioxide for long-term storage. The thermodynamic performance of these membrane-based plants are compared with similar IGCCs that capture CO2 using conventional (i.e., solvent absorption) technology. The basic plant configuration employs an entrained-flow, oxygen-blown coal gasifier with quench cooling, followed by an adiabatic water gas shift (WGS) reactor that converts most of CO contained in the syngas into CO2 and H2. The syngas then enters a WGS membrane reactor where the syngas undergoes further shifting; simultaneously, H2 in the syngas permeates through the hydrogen-selective, dense metal membrane into a counter-current nitrogen “sweep” flow. The permeated H2, diluted by N2, constitutes a decarbonized fuel for the combined cycle power plant whose exhaust is CO2 free. Exiting the membrane reactor is a hot, high pressure “raffinate” stream composed primarily of CO2 and steam, but also containing “fuel species” such as H2S, unconverted CO, and unpermeated H2. Two different schemes (oxygen catalytic combustion and cryogenic separation) have been investigated to both exploit the heating value of the fuel species and produce a CO2-rich stream for long term storage. Our calculations indicate that, when 85vol% of the H2+CO in the original syngas is extracted as H2 by the membrane reactor, the membrane-based IGCC systems are more efficient by 1.7 percentage points than the reference IGCC with CO2 capture based on commercially ready technology.

1.
Rogner
,
H. H.
, et al.
, 2000, “
Energy Resources
,” World Energy Assessment: Energy the Challenge of Sustainability, Study Sponsored Jointly by the U.N. Development Programme, the U.N. Department of Social and Economic Affairs, and the World Energy Council. Bureau for Development Policy, United Nations Development Programme, New York, Table 5.7, p.
149
.
2.
Chiesa
,
P.
,
Consonni
,
S.
,
Kreutz
,
T.
, and
Williams
,
R.
, 2004, “
Co-production of Hydrogen, Electricity and CO2 From Coal With Commercially Ready Technology. Part A: Performance and Emissions
,”
Int. J. Hydrogen Energy
0360-3199,
30
(
7
), pp.
747
767
.
3.
Shelton
,
W. W.
, and
Lyons
,
J. L.
, 2000, “
Texaco Gasifier IGCC Base Cases
,” DOE/NETL Process Engineering Division, PED-IGCC-98-001, June, revision, http://www.netl.doe.gov/coal/gasification/system/texac3y.pdfhttp://www.netl.doe.gov/coal/gasification/system/texac3y.pdf (accessed 10-28-04).
4.
Domenichini
,
R.
, 2003, “
Gasification Power Generation Study
,” IEA Greenhouse Gas R&D Programme.
5.
Holt
,
N.
,
Booras
,
G.
, and
Todd
,
D.
, 2003, “
A Summary of Recent IGCC Studies of CO2 Capture for Sequestration
,”
Proc. of 2003 Gasification Technologies Conference
,
San Francisco
, October.
6.
Shilling
,
N.
, 2003, “
Gas Turbines for Low CO2 Power Production
,”
Conference on Cycles for Low Carbon Dioxide
, Cranfield University,
Cranfield, UK
, March.
7.
Kreutz
,
T.
,
Williams
,
R.
,
Consonni
,
S.
, and
Chiesa
,
P.
, 2005, “
Co-production of Hydrogen, Electricity and CO2 From Coal With Commercially Ready Technology. Part B: Economic Analysis
,”
Int. J. Hydrogen Energy
0360-3199,
30
(
7
), pp.
769
784
.
8.
Bachu
,
S.
, and
Gunter
,
W. D.
, 2003, “
Acid Gas Injection in the Alberta Basin, Canada: A CO2 Storage Experience
,”
Proc. of the 7th International Conference on Greenhouse Gas Control Technologies
,
Vancouver
, Canada, September.
9.
Lozza
,
G.
, and
Chiesa
,
P.
, 2001, “
Low CO2 Emission Combined Cycles with Natural Gas Reforming, Including NOx Suppression
,” ASME Paper No. 2001-GT-561.
10.
Lozza
,
G.
, and
Chiesa
,
P.
, 2002, “
CO2 Sequestration Techniques for IGCC and Natural Gas Power Plants: A Comparative Estimation of Their Thermodynamic and Economic Performance
,”
Proc. of CCT2002
(International Conference on Clean Coal Technologies for our Future),
Chia Laguna, CA
, Italy, October.
11.
Laursen
,
J. K.
, 1999, “
Sulfur Removal by the WSA Process
,” available at Haldor Topsøe website: http:.//www.haldortopsoe.com/site.nsf/vALLWEBDOCID/KVOOPGFB7/$file/Env-WSAdownl422pdf.pdfhttp:.//www.haldortopsoe.com/site.nsf/vALLWEBDOCID/KVOOPGFB7/$file/Env-WSAdownl422pdf.pdf (accessed on 10-19-04).
12.
Paglieri
,
S. N.
, and
Birdsell
,
S. A.
, 2002, “
Composite Membranes for Coal Gas Reforming
,”
16th Annual Conference on Fossil Energy Materials, April
, available at the NELT website: http://www.netl.doe.gov/publications/proceedings/02/materials/paglieri.pdfhttp://www.netl.doe.gov/publications/proceedings/02/materials/paglieri.pdf (accessed on 10-19-04).
13.
Kreutz
,
T. G.
,
Williams
,
R. H.
,
Socolow
,
R. H.
,
Chiesa
,
P.
, and
Lozza
,
G.
, 2002, “
Production of Hydrogen and Electricity From Coal With CO2 Capture
,”
Proc. of the 6th International Conference on Greenhouse Gas Control Technologies
,
Kyoto, Japan
, October.
14.
Rao
,
A. D.
,
Samuelsen
,
G. S.
,
Robson
,
F. L.
, and
Geisbrecht
,
R. A.
, 2004, “
Coal-Based Power Plant System Configurations for the 21st Century
,” ASME Paper GT2004-53105.
15.
Jordal
,
K.
,
Bredesen
,
R.
,
Kvamsdal
,
H. M.
, and
Bolland
,
O.
, 2004, “
Integration of H2 -Separating Membrane Technology in Gas Turbine Processes for CO2 Capture
,”
Energy
0360-5442,
29
, pp.
1269
1278
.
16.
Bredesen
,
R.
,
Jordal
,
K.
, and
Bolland
,
O.
, 2004, “
High-Temperature Membranes in Power Generation With CO2 Capture
,”
Atmos. Technol.
0091-2026,
43
, pp.
1129
1158
.
17.
Roa
,
F.
,
Way
,
J. D.
,
McCormick
,
R. L.
, and
Paglieri
,
S. N.
, 2003, “
Preparation and Characterization of Pd–Cu Composite Membranes for Hydrogen Separation
,”
Chem. Eng. J.
0300-9467,
93
, pp.
11
22
.
18.
Edlund
,
D.
, 1996, “
A Membrane Reactor for H2S Decomposition
,”
Proc. of Advanced Coal-Fired Power Systems “96 Review Meeting
, Morgantown, WV, July; available at the NELT website: http://www.netl.doe.gov/publications/proceedings/96/96ps/ps_pdf/96pspb14.pdfhttp://www.netl.doe.gov/publications/proceedings/96/96ps/ps_pdf/96pspb14.pdf (accessed 19-10-04).
19.
Morreale
,
B. D.
,
Ciocco
,
M. V.
,
Howard
,
B. H.
,
Killmeyer
,
R. P.
,
Cugini
,
A. V.
, and
Enick
,
R. M.
, 2004, “
Effect of Hydrogen-Sulfide on the Hydrogen Permeance of Palladium-Copper Alloys at Elevated Temperatures
,”
J. Membr. Sci.
0376-7388,
241
, pp.
219
224
.
20.
Howard
,
B. H.
,
Killmeyer
,
R. P.
,
Rothenberger
,
K. S.
,
Cugini
,
A. V.
,
Morreale
,
B. D.
,
Enick
,
R. M.
, and
Bustamante
,
F.
, 2004, “
Hydrogen Permeance of Palladium-Copper Alloy Membranes Over a Wide Range of Temperatures and Pressures
,”
J. Membr. Sci.
0376-7388,
241
, pp.
207
218
.
21.
Roa
,
F.
,
Block
,
M. J.
, and
Way
,
J. D.
, 2002, “
The Influence of Alloy Composition on the H2 Flux of Composite Pd–Cu Membranes
,”
Desalination
0011-9164,
147
, pp.
411
416
.
22.
Edlund
,
D. L.
, and
Henry
,
M. H.
, 1995, “
A Catalytic Membrane Reactor for Facilitating the Water-Gas-Shift Reaction at High Temperatures
,” Phase II Final Report to the U.S. DOE, Contract No. DE-FG03–91-ER81229, Nov. 30.
23.
Chiesa
,
P.
,
Lozza
,
G.
, and
Mazzocchi
,
L.
, 2003, “
Using Hydrogen as Gas Turbine Fuel
,” ASME Paper No. 2003-GT-38205.
24.
Viganó
,
F.
, 2002, “
Performance Evaluation of Hydrogen Separation Membrane Reactors for Water Gas Shift
” (in Italian) thesis, Politecnico di Milano, Italy.
25.
De Lorenzo
,
L.
,
Kreutz
,
T.
,
Chiesa
,
P.
, and
Williams
,
R.
, 2005, “
Carbon-Free Hydrogen and Electricity From Coal: Options for Syngas Cooling in Systems Using a Hydrogen Separation Membrane Reactor
,” ASME Paper No. GT2005-68572.
26.
Marigliano
,
G.
,
Barbieri
,
G.
, and
Drioli
,
E.
, 2001, “
Effect of Energy Transport on a Palladium-Based Membrane Reactor for Methane Steam Reforming Process
,”
Catal. Today
0920-5861,
67
, pp.
85
99
.
27.
Wilkinson
,
M. B.
,
Boden
,
J. C.
,
Panesar
,
R. S.
, and
Allam
,
R. J.
, 2001, “
CO2 Capture via Oxyfuel Firing: Optimisation of a Retrofit Design Concept for a Refinery Power Station Boiler
1st National Conference on Carbon Sequestration
,
Washington DC
, May 15–17.
28.
Lozza
,
G.
, 1990, “
Bottoming Steam Cycles for Combined Gas Steam Power Plants: A Theoretical Estimation of Steam Turbine Performance and Cycle Analysis
,”
Proc. of 1990 ASME Cogen Turbo
,
New Orleans
,
ASME
,
New York
, pp.
83
92
.
29.
Consonni
,
S.
, 1992, “
Performance Prediction of Gas/Steam Cycles for Power Generation
,” Ph.D. thesis, Princeton University, Princeton, NJ.
30.
Chiesa
,
P.
, and
Macchi
,
E.
, 2002, “
A Thermodynamic Analysis of Different Options to Break 60% Electric Efficiency in Combined Cycle Power Plants
,” ASME Paper GT-2002–30663.
31.
Chiesa
,
P.
,
Consonni
,
S.
, and
Lozza
,
G.
, 1998, “
A Comparative Analysis of IGCCs With CO2 Sequestration
,”
4th International Conference on Greenhouse Gas Control Technologies
,
Interlaken, Switzerland
, August.
32.
Campanari
,
S.
, and
Macchi
,
E.
, 1998, “
Thermodynamic Analysis of Advanced Power Cycles Based Upon Solid Oxide Fuel Cells, Gas Turbines and Rankine Cycles
,” ASME Paper No. 98-GT-585.
33.
Chiesa
,
P.
, 1995, “
Thermodynamic Analysis of Humid Air Gas Turbine Cycles (HAT) Integrated With Coal Gasification Processes
,” Ph.D. thesis, Politecnico di Milano, Italy.
You do not currently have access to this content.