Abstract

This study develops and validates a machine-learned (ML) actuator line model (ALM) as a promising advancement in turbine/rotor modeling that can be applied to diverse engineering applications. The model alleviates two limitations of the standard ALM, namely, its reliance on the predefined lift and drag coefficient tables and its inability to account for flow unsteadiness. The ML-ALM model is trained using a blade-resolved simulation database of forces acting on blade elements for unsteady inflow conditions. The model is validated for solitary turbine performance and wake predictions against experimental data and is verified for an inline turbine case for the performance and wake predictions of the downstream turbine against blade-resolved simulations. Its engineering applicability is demonstrated for an eight-turbine array farm simulation. The ML-ALM predicts turbine performance and wakes within 10% of blade-resolved results along with credible advection of tip vortical structures including breakdown and turbulent kinetic energy burst, using 92% less computational time than corresponding blade-resolved simulations.

References

1.
U.S. Energy Information Administration,
2024
, “
Monthly Energy Review
,” U.S. Energy Information Administration, Starkville, MS, accessed Dec. 15, 2024, https://www.eia.gov/totalenergy/data/monthly/pdf/sec1_3.pdf
2.
Kilcher
,
L.
,
Fogarty
,
M.
, and
Lawson
,
M.
,
2021
,
Marine Energy in the United States: An Overview of Opportunities
,
National Renewable Energy Laboratory
,
Golden, CO
, Standard No. NREL/TP-5700-78773.
3.
Forbush
,
D.
,
Polagye
,
B.
,
Thomson
,
J.
,
Kilcher
,
L.
,
Donegan
,
J.
, and
McEntee
,
J.
,
2016
, “
Performance Characterization of a Cross-Flow Hydrokinetic Turbine in Sheared Inflow
,”
Int. J. Mar. Energy
,
16
, pp.
150
161
.10.1016/j.ijome.2016.06.001
4.
Musa
,
M.
,
Hill
,
C.
, and
Guala
,
M.
,
2019
, “
Interaction Between Hydrokinetic Turbine Wakes and Sediment Dynamics: Array Performance and Geomorphic Effects Under Different Siting Strategies and Sediment Transport Conditions
,”
Renewable Energy
,
138
, pp.
738
753
.10.1016/j.renene.2019.02.009
5.
El Fajri
,
O.
,
Bowman
,
J.
,
Bhushan
,
S.
,
Thompson
,
D.
, and
O'Doherty
,
T.
,
2022
, “
Numerical Study of the Effect of Tip-Speed Ratio on Hydrokinetic Turbine Wake Recovery
,”
Renewable Energy
,
182
, pp.
725
750
.10.1016/j.renene.2021.10.030
6.
Salunkhe
,
S.
,
El Fajri
,
O.
,
Bhushan
,
S.
,
Thompson
,
D.
,
O'Doherty
,
D.
,
O'Doherty
,
T.
, and
Mason-Jones
,
A.
,
2019
, “
Validation of Tidal Stream Turbine Wake Predictions and Analysis of Wake Recovery Mechanism
,”
J. Mar. Sci. Eng.
,
7
(
10
), p.
362
.10.3390/jmse7100362
7.
Ouro
,
P.
, and
Stoesser
,
T.
,
2017
, “
An Immersed Boundary-Based Large-Eddy Simulation Approach to Predict the Performance of Vertical Axis Tidal Turbines
,”
Comput. Fluids
,
152
, pp.
74
87
.10.1016/j.compfluid.2017.04.003
8.
Bhushan
,
S.
,
Carrica
,
P.
,
Yang
,
J.
, and
Stern
,
F.
,
2011
, “
Scalability and Validation Study for Large Scale Surface Combatant Computations Using CFDShip-Iowa
,”
Int. J. High-Perform. Comput. Appl.
,
25
(
4
), pp.
466
487
.10.1177/1094342010394887
9.
Posa
,
A.
, and
Broglia
,
R.
,
2022
, “
Analysis of the Momentum Recovery in the Wake of Aligned Axial-Flow Hydrokinetic Turbines
,”
Phys. Fluids
,
34
(
10
), p.
105130
.10.1063/5.0117882
10.
El Fajri
,
O.
,
Bowman
,
J.
,
Bhushan
,
S.
, and
O'Doherty
,
T.
,
2024
, “
Detached Eddy Simulation of Hydrokinetic Turbine Wake in Shallow Water Depths
,”
Ocean Eng.
,
306
, p.
118083
.10.1016/j.oceaneng.2024.118083
11.
Burton
,
T.
,
Sharpe
,
D.
,
Jenkins
,
N.
, and
Bossanyi
,
E.
,
2001
, “
Aerodynamics of Horizontal-Axis Wind Turbines
,”
Wind Energy Handbook
,
Wiley
,
Chichester, UK
.
12.
Blackmore
,
T.
,
Batten
,
W.
, and
Bahaj
,
A. S.
,
2013
, “
Turbulence Generation and Its Effect in LES Approximations of Tidal Turbines
,”
Proceedings of the 10th European Wave and Tidal Energy Conference
,
Aalborg, Denmark
,
Sept. 2–5, pp. 1–9
.https://eprints.soton.ac.uk/362028/
13.
Crespo
,
A.
, and
Hernández
,
J.
,
1996
, “
Turbulence Characteristics in Wind-Turbine Wakes
,”
J. Wind Eng. Ind. Aerodyn.
,
61
(
1
), pp.
71
85
.10.1016/0167-6105(95)00033-X
14.
Masters
,
I.
,
Chapman
,
J. C.
,
Willis
,
M. R.
, and
Orme
,
J. A.
,
2011
, “
A Robust Blade Element Momentum Theory Model for Tidal Stream Turbines Including Tip and Hub Loss Corrections
,”
J. Mar. Eng. Technol.
,
10
(
1
), pp.
25
35
.10.1080/20464177.2011.11020241
15.
Rosen
,
A.
, and
Gur
,
O.
,
2008
, “
Novel Approach to Axisymmetric Actuator Disk Modeling
,”
AIAA J.
,
46
(
11
), pp.
2914
2925
.10.2514/1.37383
16.
Batten
,
W. M. J.
,
Harrison
,
M. E.
, and
Bahaj
,
A. S.
,
2013
, “
Accuracy of the Actuator disc-RANS Approach for Predicting the Performance and Wake of Tidal Turbines
,”
Philos. Trans. R. Soc. A
,
371
(
1985
), p.
20120293
.10.1098/rsta.2012.0293
17.
Turnock
,
S. R.
,
Phillips
,
A. B.
,
Banks
,
J.
, and
Lee
,
R. N.
,
2011
, “
Modelling Tidal Current Turbine Wakes Using a Coupled RANS-BEMT Approach as a Tool for Analyzing Power Capture of Arrays of Turbines
,”
Ocean Eng.
,
38
(
11–12
), pp.
1300
1307
.10.1016/j.oceaneng.2011.05.018
18.
Bowman
,
J.
,
Bhushan
,
S.
,
Thompson
,
D.
,
O'Doherty
,
D.
,
O'Doherty
,
T.
, and
Mason-Jones
,
A.
,
2018
, “
A Physics-Based Actuator Disk Model for Hydrokinetic Turbines
,”
AIAA
Paper No. 2018-3227.10.2514/6.2018-3227
19.
Calaf
,
M.
,
Meneveau
,
C.
, and
Meyers
,
J.
,
2010
, “
Large Eddy Simulation Study of Fully Developed Wind-Turbine Array Boundary Layers
,”
Phys. Fluids
,
22
(
1
), p.
015110
.10.1063/1.3291077
20.
Allaerts
,
D.
, and
Meyers
,
J.
,
2015
, “
Large Eddy Simulation of a Large Wind-Turbine Array in a Conventionally Neutral Atmospheric Boundary Layer
,”
Phys. Fluids
,
27
(
6
), p.
065108
.10.1063/1.4922339
21.
Sescu
,
A.
, and
Meneveau
,
C.
,
2015
, “
Large-Eddy Simulation and Single-Column Modeling of Thermally Stratified Wind Turbine Arrays for Fully Developed Stationary Atmospheric Conditions
,”
J. Atmos. Ocean. Technol.
,
32
(
6
), pp.
1144
1162
.10.1175/JTECH-D-14-00068.1
22.
Vanderwende
,
B. J.
,
Kosović
,
B.
,
Lundquist
,
J. K.
, and
Mirocha
,
J. D.
,
2016
, “
Simulating Effects of a Wind‐Turbine Array Using LES and RANS
,”
J. Adv. Model. Earth Syst.
,
8
(
3
), pp.
1376
1390
.10.1002/2016MS000652
23.
Yang
,
H.
,
Ge
,
M.
,
Abkar
,
M.
, and
Yang
,
X. I.
,
2022
, “
Large-Eddy Simulation Study of Wind Turbine Array Above Swell Sea
,”
Energy
,
256
, p.
124674
.10.1016/j.energy.2022.124674
24.
James
,
S. C.
,
Seetho
,
E.
,
Jones
,
C.
, and
Roberts
,
J.
,
2010
, “
Simulating Environmental Changes Due to Marine Hydrokinetic Energy Installations
,”
Oceans MTS/IEEE Seattle
, Seattle, WA, Sept. 20–23, pp.
1
10
.10.1109/OCEANS.2010.5663854
25.
Hunter
,
W.
,
Nishino
,
T.
, and
Willden
,
R. H.
,
2015
, “
Investigation of Tidal Turbine Array Tuning Using 3D Reynolds-Averaged Navier–Stokes Simulations
,”
Int. J. Mar. Energy
,
10
, pp.
39
51
.10.1016/j.ijome.2015.01.002
26.
González-Gorbeña
,
E.
,
Qassim
,
R. Y.
, and
Rosman
,
P. C.
,
2016
, “
Optimisation of Hydrokinetic Turbine Array Layouts Via Surrogate Modelling
,”
Renewable Energy
,
93
, pp.
45
57
.10.1016/j.renene.2016.02.045
27.
Gillibrand
,
P. A.
,
Walters
,
R. A.
, and
McIlvenny
,
J.
,
2016
, “
Numerical Simulations of the Effects of a Tidal Turbine Array on Near-Bed Velocity and Local Bed Shear Stress
,”
Energies
,
9
(
10
), p.
852
.10.3390/en9100852
28.
Bourget
,
S.
,
Gauvin-Tremblay
,
O.
, and
Dumas
,
G.
,
2018
, “
Hydrokinetic Turbine Array Modeling for Performance Analysis and Deployment Optimization
,”
Trans. Can. Soc. Mech. Eng.
,
42
(
4
), pp.
370
381
.10.1139/tcsme-2017-0088
29.
Pacot
,
O.
,
Pettinaroli
,
D.
,
Decaix
,
J.
, and
Münch-Alligné
,
C.
,
2019
, December, “
Cost-Effective CFD Simulation to Predict the Performance of a Hydrokinetic Turbine Farm
,”
IOP Conf. Ser. Earth Environ. Sci.
,
405
(
1
), p.
012037
.10.1088/1755-1315/405/1/012037
30.
Clary
,
V.
,
Oudart
,
T.
,
Larroudé
,
P.
,
Sommeria
,
J.
, and
Maître
,
T.
,
2020
, “
An Optimally-Controlled RANS Actuator Force Model for Efficient Computations of Tidal Turbine Arrays
,”
Ocean Eng.
,
212
, p.
107677
.10.1016/j.oceaneng.2020.107677
31.
Sharma
,
L.
, and
Chatterjee
,
D.
,
2016
, April, “
Numerical Prediction and Optimization of the Performance of Axial-Flow Hydrokinetic Turbine in an Array
,”
16th International Symposium on Transport Phenomena and Dynamics of Rotating Machinery
, Honolulu, HI, Apr. 10–16, pp.
1
9
.https://hal.science/hal?01890075/document
32.
Radfar
,
S.
,
Panahi
,
R.
,
Majidi Nezhad
,
M.
, and
Neshat
,
M.
,
2022
, “
A Numerical Methodology to Predict the Maximum Power Output of Tidal Stream Arrays
,”
Sustainability
,
14
(
3
), p.
1664
.10.3390/su14031664
33.
Malki
,
R.
,
Masters
,
I.
,
Williams
,
A. J.
, and
Croft
,
T. N.
,
2014
, “
Planning Tidal Stream Turbine Array Layouts Using a Coupled Blade Element Momentum–Computational Fluid Dynamics Model
,”
Renewable Energy
,
63
, pp.
46
54
.10.1016/j.renene.2013.08.039
34.
So̸rensen
,
J. N.
, and
Shen
,
W. Z.
, June
2002
, “
Numerical Modeling of Wind Turbine Wakes
,”
ASME J. Fluids Eng.
,
124
(
2
), pp.
393
399
.10.1115/1.1471361
35.
Churchfield
,
M. J.
,
Li
,
Y.
, and
Moriarty
,
P. J.
,
2013
, “
A Large-Eddy Simulation Study of Wake Propagation and Power Production in an Array of Tidal-Current Turbines
,”
Philos. Trans. R. Soc. A
,
371
(
1985
), p.
20120421
.10.1098/rsta.2012.0421
36.
Martınez-Tossas
,
L. A.
,
Churchfield
,
M. J.
, and
Meneveau
,
C.
,
2016
, “
A Highly Resolved Large-Eddy Simulation of a Wind Turbine Using an Actuator Line Model With Optimal Body Force Projection
,”
J. Phys. Conf. Ser.
,
753
, p.
082014
.10.1088/1742-6596/753/8/082014
37.
Glauert
,
H.
,
1963
, “
Airplane Propellers
,”
Aerodynamic Theory
,
W. F.
Durand
, ed.,
Dover, New York
, pp.
169
360
.
38.
Zhong
,
W.
,
Shen
,
W. Z.
,
Wang
,
T.
, and
Li
,
Y.
,
2020
, “
A Tip Loss Correction Model for Wind Turbine Aerodynamic Performance Prediction
,”
Renewable Energy
,
147
(
1
), pp.
223
238
.10.1016/j.renene.2019.08.125
39.
Mikkelsen
,
R.
,
Sørensen
,
J. N.
,
Øye
,
S.
, and
Troldborg
,
N.
,
2007
, July, “
Analysis of Power Enhancement for a Row of Wind Turbines Using the Actuator Line Technique
,”
J. Phys.: Conf. Ser.
,
75
(
1
), p.
012044
.10.1088/1742-6596/75/1/012044
40.
Chawdhary
,
S.
,
Angelidis
,
D.
,
Colby
,
J.
,
Corren
,
D.
,
Shen
,
L.
, and
Sotiropoulos
,
F.
,
2018
, “
Multiresolution Large‐Eddy Simulation of an Array of Hydrokinetic Turbines in a Field‐Scale River: The Roosevelt Island Tidal Energy Project in New York City
,”
Water Resour. Res.
,
54
(
12
), pp.
10
188
.10.1029/2018WR023345
41.
Guggeri
,
A.
, and
Draper
,
M.
,
2019
, “
Large Eddy Simulation of an Onshore Wind Farm With the Actuator Line Model Including Wind Turbine's Control Below and Above Rated Wind Speed
,”
Energies
,
12
(
18
), p.
3508
.10.3390/en12183508
42.
Ouro
,
P.
,
Ramírez
,
L.
, and
Harrold
,
M.
,
2019
, “
Analysis of Array Spacing on Tidal Stream Turbine Farm Performance Using Large-Eddy Simulation
,”
J. Fluids Struct.
,
91
, p.
102732
.10.1016/j.jfluidstructs.2019.102732
43.
Chawdhary
,
S.
,
Hill
,
C.
,
Yang
,
X.
,
Guala
,
M.
,
Corren
,
D.
,
Colby
,
J.
, and
Sotiropoulos
,
F.
,
2017
, “
Fotis Sotiropoulos, 2017. Wake Characteristics of a TriFrame of Axial-Flow Hydrokinetic Turbines
,”
Renewable Energy
,
109
, pp.
332
345
.Pages10.1016/j.renene.2017.03.029
44.
Apsley
,
D. D.
,
Stallard
,
T.
, and
Stansby
,
P. K.
,
2018
, “
Actuator-Line CFD Modelling of Tidal-Stream Turbines in Arrays
,”
J. Ocean Eng. Mar. Energy
,
4
(
4
), pp.
259
271
.10.1007/s40722-018-0120-3
45.
Apsley
,
D. D.
,
2024
, “
CFD Simulation of Tidal-Stream Turbines in a Compact Array
,”
Renewable Energy
,
224
, p.
120133
.10.1016/j.renene.2024.120133
46.
Bowman
,
J.
,
Bhushan
,
S.
,
Burgreen
,
G.
, and
Dettwiller
,
I.
,
2021
, “
Hydrokinetic Turbine Performance and Wake Analysis Using a Data Driven Actuator Line Model
,”
ASME
Paper No. IMECE2021-71957.10.1115/IMECE2021?71957
47.
Bowman
,
J.
,
Bhushan
,
S.
,
Burgreen
,
G.
, and
Dettwiller
,
I.
, “
A Machine-Learned Actuator Line Model for Hydrokinetic Turbines
,”
ASME
Paper No. FEDSM2024-131429.10.1115/FEDSM2024-131429
48.
Martinez
,
D.
,
Sitaraman
,
J.
,
Brewer
,
W.
,
Rivera
,
P.
, and
Jude
,
D.
,
2020
, “
Machine Learning Based Aerodynamic Models for Rotor Blades
,”
Vertical Flight Society (VFS) Transformative Vertical Flight Meeting
, San Josa, CA, Jan. 21–23, pp.
562
574
.
49.
Zehtabiyan-Rezaie
,
N.
,
Iosifidis
,
A.
, and
Abkar
,
M.
,
2022
, “
Data-Driven Fluid Mechanics of Wind Farms: A Review
,”
J. Renewable Sustainable Energy
,
14
(
3
), p.
032703
.10.1063/5.0091980
50.
Peters
,
N.
,
Silva
,
C.
, and
Ekaterinaris
,
J.
,
2023
, “
A Data-Driven Reduced-Order Model for Rotor Optimization
,”
Wind Energy Sci.
,
8
(
7
), pp.
1201
1223
.10.5194/wes-8-1201-2023
51.
Robertson
,
E.
,
Choudhury
,
V.
,
Bhushan
,
S.
, and
Walters
,
D. K.
,
2015
, “
Verification and Validation of OpenFOAM Numerical Methods and Turbulence Models for Incompressible Flows
,”
Comput. Fluids
,
123
, pp.
122
145
.10.1016/j.compfluid.2015.09.010
52.
Shur
,
M.
,
Spalart
,
P. R.
,
Strelets
,
M. K.
, and
Travin
,
A.
,
2008
, “
A Hybrid RANS-LES Approach With delayed-DES and Wall-Modeled LES Capabilities
,”
Int. J. Heat Fluid Flow
,
29
(
6
), pp.
1638
1649
.10.1016/j.ijheatfluidflow.2008.07.001
53.
Selig
,
M. S.
,
Guglielmo
,
J. J.
,
Broeren
,
A. P.
, and
Giguere
,
P.
,
1995
,
Summary of Low-Speed Airfoil Data
,
SoarTech Publications
,
Virginia Beach, VA
.
54.
Mason-Jones
,
A.
,
O'Doherty
,
D. M.
,
Morris
,
C. E.
, and
O'Doherty
,
T.
,
2013
, “
Influence of a Velocity Profile & Support Structure on Tidal Stream Turbine Performance
,”
Renewable Energy
,
52
, pp.
23
30
.10.1016/j.renene.2012.10.022
55.
Tedds
,
S. C.
,
Owen
,
I.
, and
Poole
,
R. J.
,
2014
, “
Near-Wake Characteristics of a Model Horizontal Axis Tidal Stream Turbine
,”
Renewable Energy
,
63
, pp.
222
235
.10.1016/j.renene.2013.09.011
56.
Bhushan
,
S.
,
Burgreen
,
G. W.
,
Brewer
,
W.
, and
Dettwiller
,
I. D.
,
2023
, “
Assessment of Neural Network Augmented Reynolds Averaged Navier Stokes Turbulence Model in Extrapolation Modes
,”
Phys. Fluids
,
35
(
5
), p.
055129
.10.1063/5.0146456
57.
Hunt
,
J. C.
,
Wray
,
A. A.
, and
Moin
,
P.
,
1988
, “
Eddies, Streams, and Convergence Zones in Turbulent Flows. Center for Turbulence Research
,”
Proceedings of the Summer Program
, pp. 193--208.https://ntrs.nasa.gov/citations/19890015184
You do not currently have access to this content.