Abstract

The study aims to understand the differences in aerodynamic pressure between urban rapid rail (URR) transit and high-speed railway tunnels caused by different tunnel portal structures. In this paper, a three-dimensional compressible turbulent flow model is used to simulate trains entering tunnels with three portal forms. The effects of tunnel portal forms and blockage ratio on the aerodynamic interaction between trains and tunnels are analyzed. Using full-scale test data, the reliability of simulating train entry into the tunnel is verified. Based on validated simulations, peak values and maximum pressure gradients are investigated for the three scenarios mentioned above. As a result, the transient pressure caused by the three types of inclined portals does not differ significantly, but it affects a train's surface pressure varies over time. The ring oblique and reversed ring oblique portals both reduce primary compression wave's maximum pressure gradient, while reversed ring oblique portals exhibit better performance. In addition, the study also identifies a critical blockage ratio β*, which determines the opposing effects of the two portal types in mitigating the aerodynamic interaction.

References

1.
Zhang
,
C.
,
2018
, “
Research on the System Connotation and Characteristics of Urban Area Rapid Rail Transit
,”
Urban Roads Bridges Flood Control
, 2018(
8
), pp.
286
289
.
2.
Xiong
,
X. H.
,
Zhu
,
L.
,
Zhang
,
J.
,
Li
,
A. H.
,
Li
,
X. B.
, and
Tang
,
M. Z.
,
2020
, “
Field Measurements of the Interior and Exterior Aerodynamic Pressure Induced by a Metro Train Passing Through a Tunnel
,”
Sustainable Cities Soc.
,
53
, p.
101928
.10.1016/j.scs.2019.101928
3.
Jianyu
,
W.
,
2008
, “
Guidelines for Transient Air Pressure and Ride Comfort in High-Speed Railway Tunnels
,”
Mod. Tunnel Technol.
, 2018(
2
), pp.
1
5
.
4.
Mok
,
J. K.
, and
Yoo
,
J.
,
2001
, “
Numerical Study on High Speed Train and Tunnel Hood Interaction
,”
J. Wind Eng. Ind. Aerodyn.
,
89
(
1
), pp.
17
29
.10.1016/S0167-6105(00)00021-0
5.
Howe
,
M. S.
,
Iida
,
M.
,
Maeda
,
T.
, and
Sakuma
,
Y.
,
2006
, “
Rapid Calculation of the Compression Wave Generated by a Train Entering a Tunnel With a Vented Hood
,”
J. Sound Vib.
,
297
(
1–2
), pp.
267
292
.10.1016/j.jsv.2006.03.039
6.
Howe
,
M. S.
,
Iida
,
M.
, and
Fukuda
,
T.
,
2003
, “
Influence of an Unvented Tunnel Entrance Hood on the Compression Wave Generated by a High-Speed Train
,”
J. Fluids Struct.
,
17
(
6
), pp.
833
853
.10.1016/S0889-9746(03)00011-2
7.
Uystepruyst
,
D.
,
William-Louis
,
M.
, and
Monnoyer
,
F.
,
2013
, “
3D Numerical Design of Tunnel Hood
,”
Tunnelling Underground Space Technol.
,
38
, pp.
517
525
.10.1016/j.tust.2013.08.008
8.
Wang
,
Y.
,
2004
, “
Experimental Analysis of Aerodynamic Modeling of High-Speed Trains Entering Tunnels
,”
J. Aerodyn.
, (
3
), pp.
346
351
.
9.
Liu
,
T. H.
,
Tian
,
H. Q.
, and
Liang
,
X. F.
,
2010
, “
Design and Optimization of Tunnel Hoods
,”
Tunnelling Underground Space Technol.
,
25
(
3
), pp.
212
219
.10.1016/j.tust.2009.12.001
10.
Heine
,
D.
,
Ehrenfried
,
K.
,
Heine
,
G.
, and
Huntgeburth
,
S.
,
2018
, “
Experimental and Theoretical Study of the Pressure Wave Generation in Railway Tunnels With Vented Tunnel Portals
,”
J. Wind Eng. Ind. Aerodyn.
,
176
, pp.
290
300
.10.1016/j.jweia.2018.03.020
11.
Zhang
,
L.
,
Liu
,
H.
,
Stoll
,
N.
, and
Thurow
,
K.
,
2017
, “
Influence of Tunnel Aerodynamic Effects by Slope of Equal-Transect Ring Oblique Tunnel Portal
,”
J. Wind Eng. Ind. Aerodyn.
,
169
, pp.
106
116
.10.1016/j.jweia.2017.07.011
12.
Zhang
,
L.
,
Yang
,
M. Z.
,
Liang
,
X. F.
, and
Zhang
,
J.
,
2017
, “
Oblique Tunnel Portal Effects on Train and Tunnel Aerodynamics Based on Moving Model Tests
,”
J. Wind Eng. Ind. Aerodyn.
,
167
, pp.
128
139
.10.1016/j.jweia.2017.04.018
13.
Zhang
,
L.
,
Thurow
,
K.
,
Stoll
,
N.
, and
Liu
,
H.
,
2018
, “
Influence of the Geometry of Equal-Transect Oblique Tunnel Portal on Compression Wave and Micro-Pressure Wave Generated by High-Speed Trains Entering Tunnels
,”
J. Wind Eng. Ind. Aerodyn.
,
178
, pp.
1
17
.10.1016/j.jweia.2018.05.003
14.
Lu
,
Y. B.
,
Wang
,
T. T.
,
Yang
,
M. Z.
, and
Qian
,
B. S.
,
2020
, “
The Influence of Reduced Cross-Section on Pressure Transients From High-Speed Trains Intersecting in a Tunnel
,”
J. Wind Eng. Ind. Aerodyn.
,
201
, p.
104161
.10.1016/j.jweia.2020.104161
15.
Yuangui
,
M.
,
1995
, “
Numerical Analysis of Pressure Wave in High-Speed Railroad Tunnel
,”
J. Southwest Jiaotong Univ.
, (
6
), pp.
667
672
.
16.
Du
,
J. M.
,
Fang
,
Q.
,
Wang
,
J.
, and
Wang
,
G.
,
2021
, “
Influences of High-Speed Train Speed on Tunnel Aerodynamic Pressures
,”
Appl. Sci.
,
12
(
1
), p.
303
.10.3390/app12010303
17.
Izadi
,
T.
,
Mehrabian
,
M. A.
,
Abouali
,
O.
, and
Ahmadi
,
G.
,
2019
, “
3-D Numerical Analysis of Train-Induced Flow Inside Four Ventilated Underground Subway Stations and Connecting Tunnels
,”
J. Wind Eng. Ind. Aerodyn.
,
193
, p.
103974
.10.1016/j.jweia.2019.103974
18.
Deng
,
E.
,
Yang
,
W. C.
,
Lei
,
M. F.
,
Zhu
,
Z. H.
, and
Zhang
,
P. P.
,
2019
, “
Aerodynamic Loads and Traffic Safety of High-Speed Trains When Passing Through Two Windproof Facilities Under Crosswind: A Comparative Study
,”
Eng. Struct.
,
188
, pp.
320
339
.10.1016/j.engstruct.2019.01.080
19.
Liu
,
T. H.
,
Geng
,
S. G.
,
Chen
,
X. D.
, and
Krajnovic
,
S.
,
2020
, “
Numerical Analysis on the Dynamic Airtightness of a Railway Vehicle Passing Through Tunnels
,”
Tunnelling Underground Space Technol.
,
97
, p.
103286
.10.1016/j.tust.2020.103286
20.
Huang
,
S.
,
Che
,
Z. X.
,
Li
,
Z. W.
,
Jiang
,
Y. N.
, and
Wang
,
Z. G.
,
2020
, “
Influence of Tunnel Cross-Sectional Shape on Surface Pressure Change Induced by Passing Metro Trains
,”
Tunnelling Underground Space Technol.
,
106
, p.
103611
.10.1016/j.tust.2020.103611
21.
Wang
,
F.
,
Weng
,
M. C.
,
Xiong
,
K.
,
Han
,
J. Q.
,
Obadi
,
I.
, and
Liu
,
F.
,
2022
, “
Study on Aerodynamic Pressures Caused by Double-Train Tracking Operation in a Metro Tunnel
,”
Tunnelling Underground Space Technol.
,
123
, p.
104434
.10.1016/j.tust.2022.104434
22.
Liu
,
F.
,
Zhou
,
W.
,
Niu
,
J. Q.
, and
Zhang
,
J.
,
2019
, “
Impact of Increased Linings on Pressure Transients Induced by a Train Passing Through a Tunnel
,”
Sustainable Cities Soc.
,
45
, pp.
314
323
.10.1016/j.scs.2018.10.030
23.
Menter, F. R., 1994, “Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications,”
AIAA Jnl.
, 32(8), pp. 1598–1605.10.2514/3.12149
24.
Xue
,
R.-D.
,
Xiong
,
X.-H.
,
Wang
,
K.-W.
,
Jiao
,
Q.-Z.
,
Li
,
X.-B.
,
Dong
,
T.-Y.
, and
Wang
,
J.-Y.
,
2023
, “
Influence of Variable Cross-Section on Pressure Transients and Unsteady Slipstream in a Long Tunnel When High-Speed Train Passes Through
,”
J. Cent. South Univ.
,
30
(
3
), pp.
1027
1046
.10.1007/s11771-023-5273-0
25.
Xiong
,
K.
,
Weng
,
M.
,
Zou
,
Z.
,
Zhu
,
X.
, and
Liu
,
F.
,
2025
, “
Field Measurements of Aerodynamic Pressures Induced by Suburban Rail Transit Train Passing Through Double-Track Tunnel With Mid-Partition Wall
,”
Int. J. Rail Transp.
,
13
(
1
), pp.
120
150
.10.1080/23248378.2024.2328638
26.
Xianwei
,
S.
,
2012
, “
Design of Cave Gates and Buffer Structures for High and Steep Slopes of Passenger Dedicated Lines
,”
Railw. Constr. Technol.
, 2012(05), pp.
91
95
.
You do not currently have access to this content.